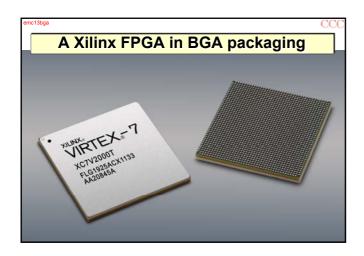
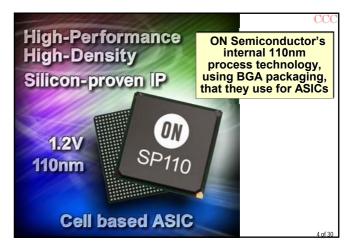


Another EMC resource from EMC Standards


Suppressing ICs with BGA or multiple power rails 2014


June 25, 2014 Keith Armstrong

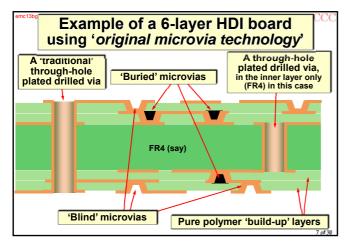
Creating good planes under BGAs

- For cost-effective SI, PI and EMC, it is important to have solid PCB planes *underneath the ICs...*
 - unfortunately, through-hole-plate (THP) PCB technology means an array of via holes under all BGAs...
 - which dramatically perforate the planes and significantly reduce their effectiveness for EMC...
 - and also harm signal integrity (SI) and power integrity (PI)
- Two solutions:
 - $\ \textbf{High Density Interconnect technology} \ (\textbf{HDI}, \textbf{= microvia})...$
 - fine-line THP techniques, to create proper meshes

High Density Interconnect (HDI) PCB manufacturing technology

- Also known as microvia technology, or Sequential Build-Up technology (or simply 'Build-Up')
- Based on 'microvias' of 0.15mm (6 thou) diameter or less, which are only as long as needed...
 - and don't steal solder during reflow, so allow via-in-pad layouts, very good for RF and EMC...
 - can achieve twice the number of pins/area than THP...
 - can significantly reduce the number of PCB layers especially where THP would require 10 or more layers

6 of 30



June 25, 2014 Keith Armstrong

HDI benefits

- HDI techniques help to make the smallest, lightest, and least power-hungry products...
 - and can be found in a wide variety of common products (including some toys)
- HDI makes it possible to use the smallest IC package styles, e.g...
 - Miniature or Micro BGA (especially with ball pitch <1mm)
 - DCA (direct chip attach)
 - Flip-chip
 - · CSP (chip scale packaging)
 - TAB (tape automated bonding)

0 of 20

mc13bga

HDI benefits continued...

- These small ICs, and the smaller PCBs they allow, are generally excellent for SI and EMC...
 - via-in-pad reduces decoupling inductance and pushes resonant frequencies higher...
 - shorter traces make less efficient 'accidental antennas'...
 - smaller PCBs resonate at higher frequencies...
 - the much smaller sizes of the ICs and their close proximity to a solid 0V plane means they emit less...
 - shorter traces may not need to be transmission lines

of 30

emc13bga

HDI's planes aren't perforated

- So they have lower impedances...
 - · hence lower emissions and better immunity...
 - and they have constant return path inductance...
 - ullet for improved $Z_{ heta}$ control of transmission-lines...
 - and they achieve better shielding between the circuits on the top and bottom sides...
 - e.g. digital on top, analogue/RF on the bottom...
 - and they create solid, continuous planes under BGAs...
 - so help reduce the specs of filtering and shielding

10 of 30

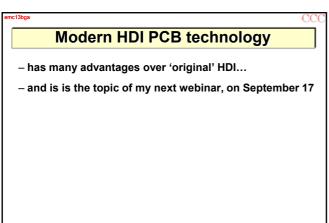
ic13bga

HDI suppliers and technologies

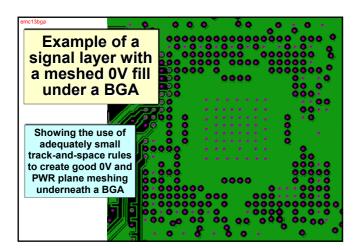
- In May 2000 there were 62 manufacturers of HDI boards worldwide, and in May 2008 there were 32 manufacturers just in the UK...
 - their manufacturing techniques can vary, and may need different layout techniques, so always check with chosen manufacturer before starting board layout
- Basic standard: IPC-2315 (from www.ipc.org) ...
 - but HDI requires a different approach to PCB layout...
 - and depending on the supplier some PCB EMC techniques might not be able to be used

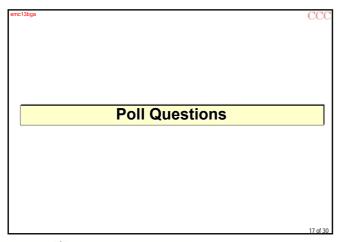
People seem to think that HDI is costly, but it should cost less than THP!

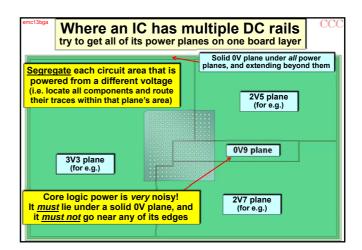
- An IPC survey in 2000 found HDI boards could be purchased for the same cost as THP...
 - and not using buried vias helps reduce costs further
- Latest advice (Mentor Graphics) is that boards needing
 8-10 layers should cost less if made in HDI...
 - e.g. a high-density 18 layer THP would only need 10 layers if made using HDI...
 - but even lower densities and with fewer layers, the EMC (and SI) advantages of HDI make it more cost-effective than THP



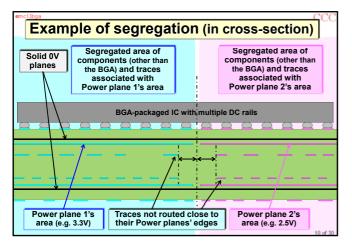
June 25, 2014 Keith Armstrong



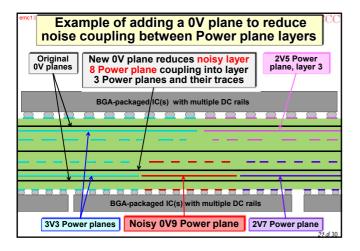

Fine-line THP techniques ■ We must <u>at least</u> achieve a continuous mesh (grid)


- of 0V and power traces under every BGA...
- to connect all their 0V and PWR power pins to their respective decaps...
- and to the 0V and PWR planes on the rest of the board...
- and to help control emissions
- It won't be half as good for EMC as a solid plane (e.g. using HDI)...
 - but it will be the best we can do in THP

14 of 30

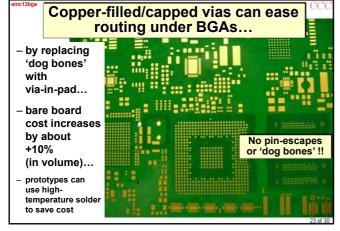


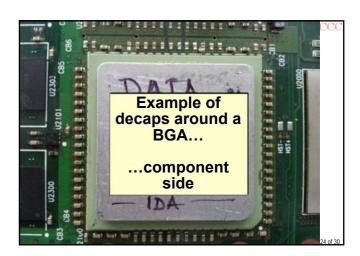
June 25, 2014 Keith Armstrong



Reducing the crosstalk between PWR planes on parallel layers

- To help prevent RF noise in a 'noisy' plane...
 - e.g. processor core logic supply, typically 0.9 1.2V
 - from coupling its noise into parallel power planes and spreading more widely around a board...
 - · increasing emissions...
 - place a new 0V plane between them in the stack-up

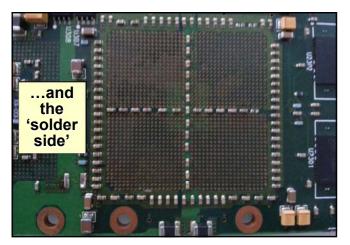

20 of 30

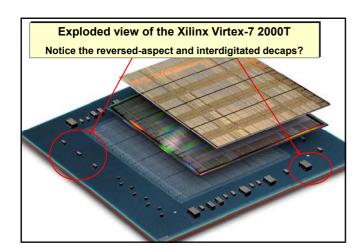


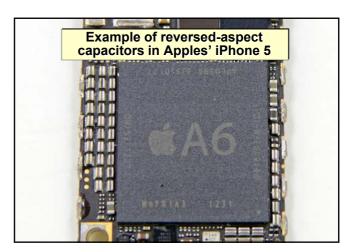
Reducing crosstalk between PWR planes on parallel layers continued...

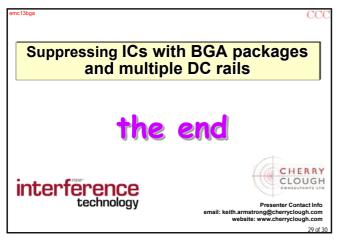
- 'Sandwiching' a power plane layer between two solid 0V planes as in the previous graphic...
 - also means no trace routing has to worry about crossing any splits between different power plane areas...
 - and can double the power planes' buried decoupling capacitance...
 - which helps suppress emissions at >300MHz

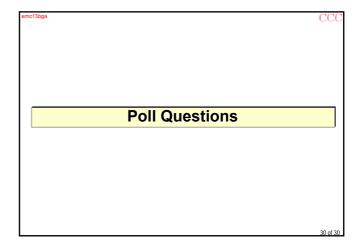
22 of 30




June 25, 2014 Keith Armstrong






Special capacitors with reduced ESL can improve Power Integrity, e.g...

- 'reversed-aspect', e.g. 0204, 0508, Murata LLL, etc...
- 'interdigitated', e.g. AVX IDC, LICA; Murata LLA, LLM...
- balanced X2Y® capacitors used as decouplers...
- lossy capacitors dampen resonances, e.g. Murata LLR
- buried capacitors, e.g. Murata GRU...
- distributed 'embedded' capacitance using proprietary board laminates for one or more pairs of PWR/GND planes, e.g...
 - Faradflex (Oak Mitsui); ECM (3M);
 Interra[™] HK 04J (Dupont); EmCap® (Sanmina), and others.

