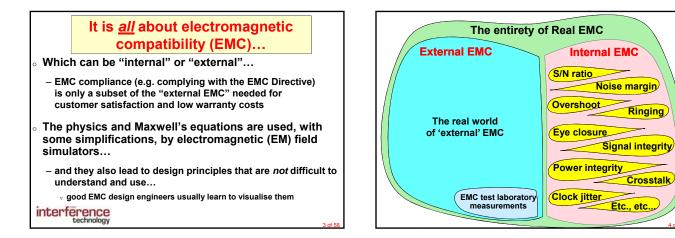

Another EMC resource from EMC Standards


Cost-effective EMC Design by Working with the Laws of Physics

Helping you solve your EMC problems

9 Bracken View, Brocton, Stafford ST17 0TF T:+44 (0) 1785 660247 E:info@emcstandards.co.uk

Deriving easy EMC design principles

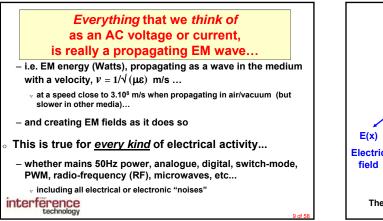
The following slides summarise the physics and the Maxwell's...

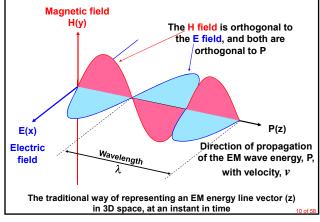
w without using equations or difficult maths...

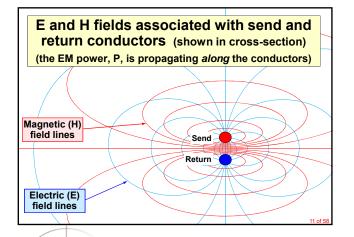
- leading to some design principles that are easy to visualise and easy to apply...
 - $_{\rm v}\,$ and proven over 30+ years to improve company financial performance...

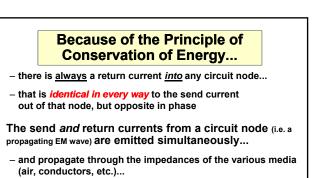
- and then apply them to an example electronic product

interference technology


AC versus DC


- The following EMC principles apply to all AC currents, whether they are associated with:
 - $_{\rm v}\,$ electrical power (DC or AC or RF, femtowatts to terawatts)
 - electronic signals (analogue, digital, switch-mode, RF, etc.)
 - $_{\rm v}\,$ noise (in any power supplies or signals)
- DC currents always flow "downhill" from the positive rail to 0V...
 v or uphill from the negative rail...
 - whereas AC and RF currents flow in any paths, regardless of DC voltage potentials, in any/all directions

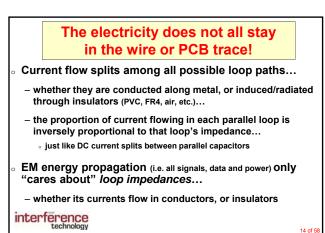

interference

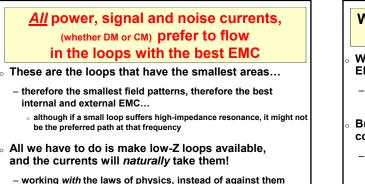

μ and ε continued... Permeability (μ) and permittivity (ϵ) The routes taken by conductors, plus μ and ϵ , cause inductance (L) and capacitance (C)... Everything in this universe has permeability (µ)... associated with *inductive* energy, drawn as lines of magnetic (H) energy flow (flux) - so whenever there is a fluctuating voltage (V) there is <u>always</u> an associated *current* (I).... v and vice-versa And it also has permittivity (ɛ)... associated with capacitive energy, In insulators (e.g. PVC, air, FR4) μ and ϵ cause effects drawn as lines of electric (E) energy flow (flux) similar to inductance and capacitance... And it has resistivity (R) (except for superconductors)... - so whenever there is a fluctuating electric field (E) - associated with energy loss, the conversion of EM energy flow into heat there is always an associated magnetic field (H) and vice-versa interference interference

CHERRY CLOUGH CONSULTANTS LTD

 eventually meeting up to create what we think of as the send/return current loop

interference

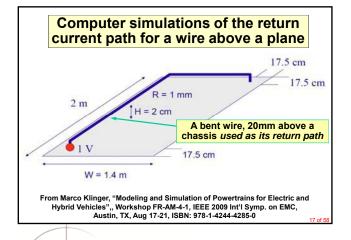

In the "far field" of an EM source, E and H fields experience the "wave impedance": $\sqrt{(\mu/\epsilon)}$...


- in air or vacuum: $120\pi \Omega$ (approximately 377Ω)... v but always a lower Z in other media (PVC, FR4, etc.)

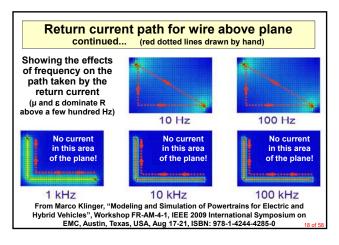
But in the "near field" of an EM source, the wave Z can be much higher or lower than 377Ω ...

And conductors add L, C and R, so can have impedances lower or higher than 377Ω

interference



interference

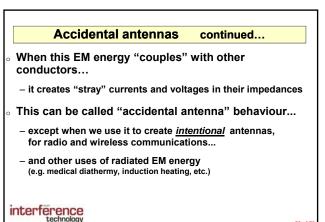

We could say that our products are trying to help us achieve good EMC! We often feel like our designs are fighting us over good EMC... - making our lives more difficult, as if the Laws of Physics were working against us

- But in fact, for any given arrangement of circuit conductors, shielding, etc....
 - Maxwell's Equations ensure they are emitting the least EM fields that they can!

interference technology

CHERRY CLOUGH

interference technology



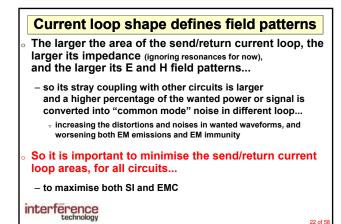
All conductors are "accidental antennas"

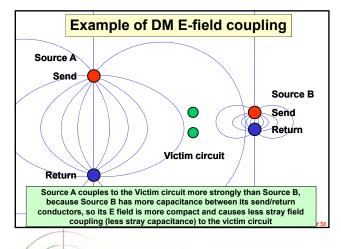
"Antenna" means that the EM wave energy propagating along conductors...

- $_{\rm v}\,$ that we call electrical/electronic power, signals, noise, etc. and measure as Volts and Amps...
- has a spatial field pattern...
- shaped by the impedances associated with (what we are describing here as...) its send/return current loop...
- which relate to the dimensions and structure of the conductors, their associated dielectrics (insulators), and all of their permeabilities and permittivities

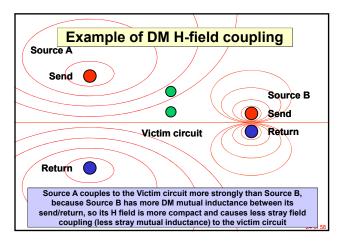
interference

The "accidental antenna" effect works in reverse too


When a conductor is *exposed* to E, H or EM waves in its insulating medium (e.g. air)....

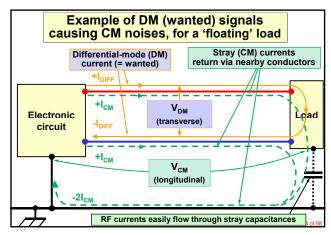

 its electrical/electronic circuit experiences the same voltage and current noise as we would need to create if we wanted to generate the *exact same* field pattern and field strength at the surface of the conductor...

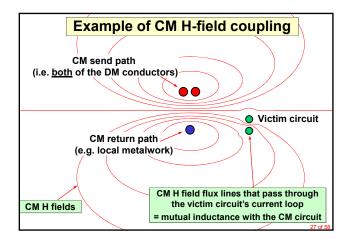
- this is called the Principle of Reciprocity

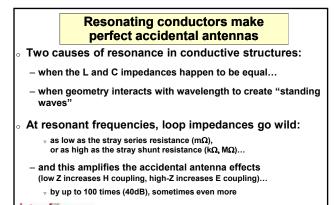

So a conductor that causes EM emissions, will suffer noise "pick-up" in exactly the same way (i.e. designing for low emissions, improves immunity)

interference

CHERRY CLOUGH

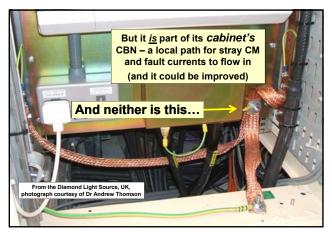


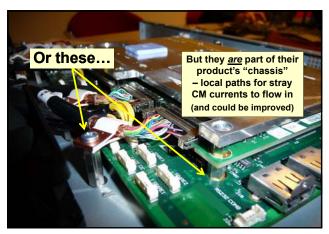


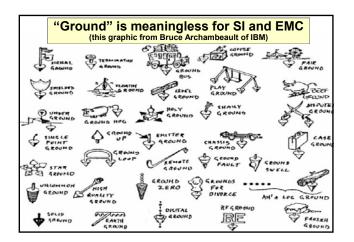

Power and signals in conductors have two different modes of wave propagation

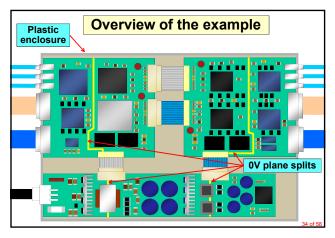
- Differential Mode (also called transverse or metallic mode) Caused by the "wanted" power and signals...
- Common Mode (also called longitudinal or antenna mode) caused by the stray, leaked, "unwanted" EM energy...
 when a DM loop's EM fields couple with another conductor
- Some of the EM energy travels as CM current, also in a loop...
- which is almost always the main cause of EM emissions and immunity (i.e. the worst "accidental antenna" effects) over 1MHz -1GHz

interference


interference technology


"Earth" or "Ground" as a perfect sink for current or voltage <u>cannot exist</u>... <u>All</u> conductors have impedance, and behave as accidental antennas... so there can never be a perfect "sink" for EM energy at any frequency... In any case, all currents flow in closed loops... so even if a zero-impedance EM energy sink could exist... (but it can't, even if using superconductors with no resistance)... it wouldn't play any part in SI or EMC



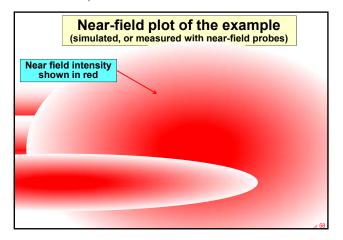


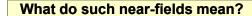
The assumptions made in its design

Single-point "earthing" or "grounding",

- using 0V plane splits between (and on) the PCBs...
 - assumed to keep devices' circulating return currents confined to certain circuit areas, preventing crosstalk of noise between them (e.g. digital noise in analogue)...
- known to be bad practice, when microprocessors and switchmode converters are used, since 1980 (or earlier)
- Lowest BOM cost assumed to give the most profitable product...
- known to be incorrect since 2000 (when time to market became the most important issue for a product's profitability)

interference


The real-life example continued...


- I see many designs like this every year...
 - they have poor functional performance at first, especially poor S/N ratios, unreliable software...
 - $_{\rm v}\,$ requiring many design iterations to solve, causing project delays, increased costs and reduced profitability
 - and they fail EMC tests at first, requiring many design iterations to solve...
 - causing more delays and more project costs, requiring filters and shielding that increase BOM cost, reducing profitability even more
 - and their higher-than-necessary levels of warranty returns erode profitability even more

interference

6 of 11

On the PCB – they are the wanted DM signals...

 <u>plus</u> DM and CM crosstalk and noise, that cause reduced S/N ratios in analogue circuits, and reduced digital noise margins (unreliable software)

- o In EMC testing...
 - high levels of "far field" emissions, and poor immunity
- In Real Life...
- a lower proportion of satisfied customers (hence increased cost of sales) and higher levels of warranty costs

interference

Making improvements

Understanding that <u>all</u> currents (including stray CM "noise" currents) flow in closed loops...

- and that loop shape and area govern field patterns...
- and that current prefers to flow in loops with less Z...
 v hence the smallest field patterns and the best internal and external EMC
- means we can make a number of improvements to the circuit design and PCB layout...
- to provide all DM and CM currents with smaller loops...
- which they will naturally take: improving EMC

interference

Improvement #1 – create an RF Reference

- Replace the multiple PCBs with a single PCB...
- that has a common conductor (almost always at 0V) over its entire area, called the RF Reference...
- a solid, continuous, copper PCB plane, that lies underneath and extends beyond all devices and traces
- which achieves very low impedance (Z)...
 depends on devices and EMC spec's, but always <<1Ω...
- over the frequency range that must be controlled to avoid causing/suffering EMI...
 - i.e. all of the DM frequencies created in its devices, and all of the frequencies in the operational environment

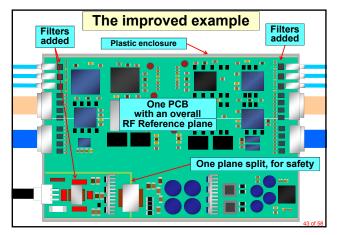
interference technology

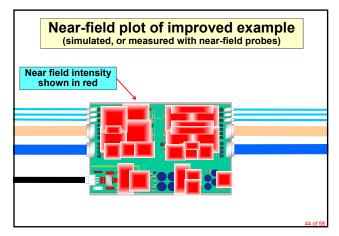
Improvement #2 – DC supply decoupling

Design the decoupling between DC power rails and RF Reference to achieve low Z...

- $_{\rm v}$ depends on devices and EMC spec's, but always <<10...
- over the frequency range that needs to be controlled to prevent the product causing/suffering EMI
- Now AC DM currents in the DC rails can flow in tiny loops very close to the devices that cause them...
- so they do, and do not flow widely in the RF Reference or power distribution network...
- making small areas of DM near-fields that create little CM

interference

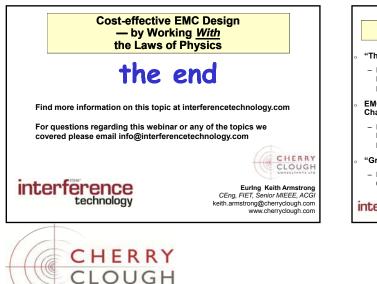

Improvement #3 – cable filtering


 Add direct bonds or filters to the RF Reference on <u>all</u> traces connected to off-PCB conductors...

- whatever their electrical/electronic/other purpose
 - (including mechanical, hydraulic, pneumatic, etc.)..
- at least using a capacitor to the RF Reference…
 - $_{\rm v}$ (often making more complex filters by combining capacitors with resistors and/or soft-ferrites, too many details for here)...
- placed where the traces connect to the conductors...
- to provide low-Z paths for CM currents that would otherwise "leak" from the PCB into the conductors...
 - $_{\rm v}$ Z depends on devices and EMC spec's, but always <<1 $\!\Omega$

interference technology

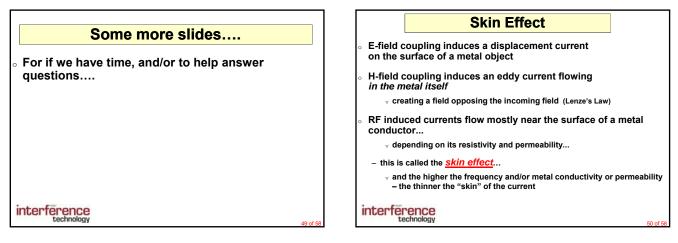
These good EMC design techniques work exactly as well for immunity, as they do for emissions...

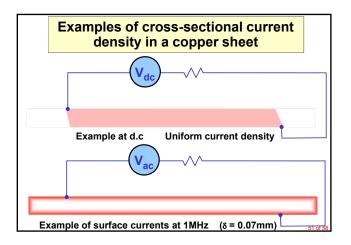

- because they employ the fundamentals of electromagnetism...
- to make field patterns and wave propagation as compact as possible...
- dramatically reducing EM coupling, reducing emissions, and improving immunity...
- thereby improving: internal EMC (PI and SI); external EMC; and reliability

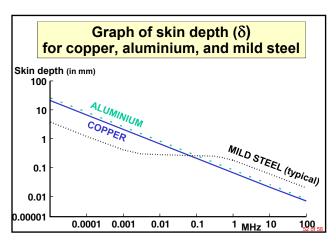
interference

Conclusions

- All electrical and electronic activities are really EM energy travelling as waves...
 - and connecting to safety earth/ground has no effect on them so is unimportant and unnecessary
- We can easily design circuits and PCBs to create small, low-Z current loops for both the wanted DM and the stray CM currents...
- the EM waves naturally prefer to flow in these routes...
- by working with the laws of physics, we automatically achieve very compact field patterns...
- best for internal and external EMC, and financial success


interference

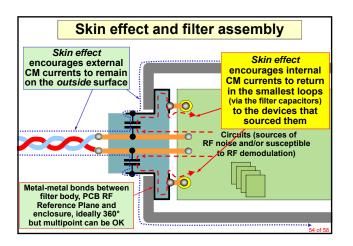



CONSULTANTS LTD

Some useful references "The Physical Basis of EMC" • Keith Armstrong, Nutwood UK, October 2010 ISBN: 978-0-9555118-3-7 purchase from www.emcacademy.org/books.asp EMC Design Techniques for Electronic Engineers Chapter 2 (identical to "The Physical Basis of EMC" above) • Keith Armstrong, Nutwood UK 2010 ISBN: 978-0-9555118-4-4 purchase from www.emccacademy.org/books.asp "Grounds for Grounding" • Elya B Joffe, Kai-Sang Lock, IEEE Press, John Wiley & Sons, Inc., 2010 ISBN: 978-04571-66008-8

RF currents cannot flow <u>through</u> a sheet of metal !

Above a certain frequency, most of the current has to flow around metal *edges*

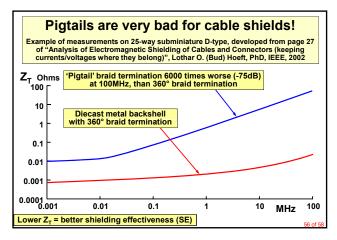

(including the edges of holes, apertures, joints, gaps, seams)...

No current loop can ever have zero impedance...

- so some return current still flows in other paths, creating fields that couple noise into other circuits...
- so we use skin effect to help contain DM and CM current loops, to further minimise field patterns...
 - especially effective if we can't make the loops small enough not to have high impedance resonances in the frequency range we need to control

interference

CHERRY CLOUGH CONSULTANTS LTD


Improvement #4 – cable shielding

- Add shielding to <u>all</u> unfiltered and unbonded off-board conductors...
- to contain the CM currents that would otherwise "leak" out of (or into) the conductors as EM fields
- shielding can also be used in addition to filtering

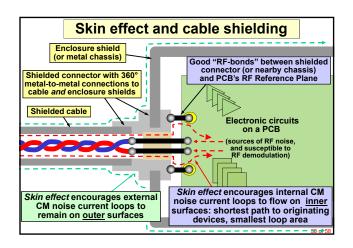
Use 360° shielding throughout...

- including the shields' connections to the RF Reference
 - too many details to go into here,
 except don't use pigtails to connect cable shields

interference

Improvement #5 – PCB shielding

The enclosure can be converted from plastic to metal (or metallised)...


- and RF-bonded to the PCB's RF Reference
- Alternatively, shielding can be carried out at PCB level...

- by electrically bonding metal (or metallised) boxes onto the RF Reference

Either will help contain EM fields that have not been sufficiently constrained...

- by devices and design of circuits, decoupling and PCB

interference

