emc standards

Another EMC resource from EMC Standards

A Practical Guide for EN 61000-4-3: Immunity to radiated radio frequencies

For instance, commercial avionics manufacturers might be required by O160 to test with pulsed fields of up to $3,000 \mathrm{~V} / \mathrm{m}$ peak, $300 \mathrm{~V} / \mathrm{m}$ average, at frequencies of up to 40 GHz . Automotive
 typically require their suppliers of electronic modules to have passed tests with fields of up to $200 \mathrm{~V} / \mathrm{m}$ (and/or its equivalent in conducted RF current) at frequencies of up to 2 GHz .

> This guide describes how to apply EN

61000-4-3:2003 (the version that is current at the time of writing) and applies equally well to the 2003 version of IEC 61000-4-3.
 are continually being amended to keep pace with technical progress (see later) so it is always best to use the latest version of the test standard, except where regulatory requirements for the EU or elsewhere specify the exact version that is to be used. Since many national EMC tests outside the EU are based on IEC standards, this guide may be of use non-EU EMC specifications apply.

Where an electronic equipment has a safety-related or legal metrology function, requires high reliability, or is critical - mere compliance with the EMC Directive is often insufficient for ensuring that it has been designed correctly additional and/or tougher immunity requirements may need to be applied. Refer to the section "Achieving real-life reliability and low warranty costs" below, plus the IEE's guide [5] and the on-line article [6] for more on this.

Compliance with the EMC Protection Requirements is a legal requirement that applies in addition to the requirement to follow one of the conformity assessment routes (Self-Declaration, Article 10.1; or CF, Article 10.2). Equipment that passes tests to all relevant immunity standards nevertheless is unreliable or performs badly in normal use because it is not immune enough for its real-life EM environment - does not comply with the EMC Directive's Protection Requirements, and is therefore illegally CE marked.

Applying EN 61000-4-3 (or similar) tests which go beyond the minimum requirements of the EMC Directive's listed tandards, and/or appropriate desig more methods, can help make equipment more
reliable, reduce warranty costs, improve customer satisfaction and reduce exposure to liability claims - for more on this refer to the section on "Radiated RF esting and real-life reliability" later in this booklet.

This series of booklets is concerned with testing to the EN standards for typical and domestic, commercial, light industrial and the immunity tests may be required by the aerospace, rail, marine and military environments. Some of these industries have developed their own test methods based on their own particular kinds of EM
environments.

The relationship between EN 61000-4-3
 and the second edition of the EMC Directive (2004/108/EC)

 minimum requirements for Selfconducted RF immunity tests which go
beyond simple compliance with the

Declaration to the EMC Directive. especially true where mobile radio transmitters (e.g. cellphones, walkietalkies, etc.) could be used nearby, or where industrial scientific or medical equipment that uses radio frequency energy to perform its direct function CIPSR 11 or EN/IEC 55011 refer), is nearby.

These two situations are specifically not covered by the generic or product-family immunity standards listed under the EMC Directive, meaning that it is up to the manufacturer to assess the
electromagnetic (EM) environment that
their equipment will be used in and test it accordingly, to comply with the EMC
Directive's Protection Requirements.
Some examples of field strengths

Total emitted RF power and type of radio transmitter typical of the UK	Typical proximity (metres) for a field strength of...			
	$1 \mathrm{~V} / \mathrm{m}$	$3 \mathrm{~V} / \mathrm{m}$	$10 \mathrm{~V} / \mathrm{m}$	$30 \mathrm{~V} / \mathrm{m}$
0.8W typical hand-held GSM cellphone; 1W leakage from domestic microwave ovens	5	1.6	0.5	0.16
2W maximum hand-held GSM cellphone (far from base-station or in standby)	7.8	2.5	0.8	0.25
4W private mobile radio (hand-held) (e.g. typical VHF or UHF walkie-talkies)	11	3.6	1.1	0.36
10W emergency services walkie-talkies, and CB radio	16	5.0	1.6	0.5
20W car mobile cellphone, also aircraft, helicopter, and marine VHF radio-communications	25	8	2.5	0.8
100W land mobile (taxis, emergency services, amateur); paging, cellphone and private mobile radio base-stations	54	18	5.4	1.8
1.0kW DME on aircraft and at airfields; 1.5kW land mobile transmitters (e.g. some CBs)	210	70	21	7
25kW marine radars (both fixed and ship-borne)	850	290	89	29
100kW long wave, medium wave, and FM radio broadcast	1.7 k	580	170	58
300kW VLF/ELF communications, navigation aids	3 k	1 k	300	100
5MW UHF TV broadcast transmitters	12 k	4 k	1200	400
100MW (peak pulse power) ship harbour radars	55 k	18 k	5.5 k	1.8 k
1GW (peak pulse power) air traffic control and weather radars	170 k	60 k	17 k	6 k
10GW (peak pulse power) military radars	550 k	180 k	55 k	18 k

These figures are based on simplifying assumptions including: omnidirectional antennae; anechoic environment. Antenna structures can have gain, increasing field

 structures can increase field strengths very considerably.

What are radiated RF fields and how are they caused?
very powerful (such as broadcast
transmitters) they are usually located equipment. Broadcast transmitters are often situated on hills and tall buildings to maximise the area they cover, but when they are located in cities or when other buildings or electronic equipment are nearby they can cause significant interference problems [7], [8], [9]. The modern electromagnetic environment is increasingly noisy

A modern problem is the rapid growth personal radio communications using Wi Fi , and many other wireless technologies. Although these generally use low-powered transmitters (under 5W) they generate quite powerful fields nearby and there are few practical ways to prevent them from being used in very close proximity to other electronic equipment. Even 25 mW

Bluetooth transmitters can inject tens of
milliamps of current at 2.45 GHz into a

RF currents and voltages coupled into conductors (all cables, wires, printed-circuit traces, connector pins, integrated circuit lead frames and bond wires)

ine by a labelling and plastic bag от Кшиәчъе!р sәsn јечł әи!чэеш би!беуэед though both items might have been fully tested to their respective standards under the EMC Directive, a spacing of a few metres is usually required so that they do not cause the sensitive checkweigher to record the wrong weight, leading to incorrect pricing or excessive product
wastage. See 'Banana Skin' No. 49 for an example of this [8].

The first, and most obvious interference mechanism - by which the conducted with electronic circuits - is called 'direct
 frequency coincides with (or is close enough to) the frequency of a signal in a
 problem at the clock frequency of digital
processors or display drivers, and also at
 s儿ə ә!

 by the design of their equipment or the
 e se pue 'sџемебәш иәлә 'sџемоן! до result their unintentional emissions can be
 to be a direct hazard to human health.
I łe suo!̣s!!шә ןnләмоd чбпочł иәл三 Z 55011 (under the EMC Directive),

 unintentionally emitted from ISM. This is often a problem in the food industry, where an automatic 'checkweigher' is
immediately followed on the production noise thresholds used by digital devices
but anything that uses electronics can misbehave when exposed to certain RF fields or combinations of fields. Without adequate protection from RF fields, few modern electronic circuits behave reliably in the modern world.
If the conducted noise levels are high enough they can even cause permanent damage to semiconductors, and even to other electronic components. This is mainly of concern for avionics, military and security organisations who have to worry very near to powerful radar transmitters, the electromagnetic pulses from nuclear

 requencies above 100 MHz , so that mobile transmitters such as cellphones, Bluetooth and Wi-Fi that transmitted at 900 MHz and above were unlikely to interfere with equipment unless they were very near to carried out by the University of York [11] showed, amongst other valuable (CM) currents picked up by a typical twisted-pair Ethernet cable from an ensemble of nearby 900 MHz cellphones only diminished at about 0.9 dB per metre with distance along the cable. So it seems that mobile transmitters operating at 900 MHz and above can indeed have a significant effect on equipment by coupling into its cables at some metres distance. When conductors (such as cables, wires, printed circuit board traces, semiconductor ead-frames and bond wires, etc.) are exposed to RF fields, RF currents and voltages are coupled into them. This is sometimes called field-to-conductor
coupling. Shielded cables and connectors are never perfect, so there is always some coupling from the field to their inner conductor(s).
These coupled RF currents and voltages power that are supposed to be carried by those conductors, so they are classed as noise. Natural resonances in the conductors and their circuits will amplify radiated RF fields at some radio
frequencies, whilst attenuating it at others.
Sufficient levels of noise can cause errors or malfunctions in the analogue or digital conductors by means of three different interference mechanisms (discussed later), In analogue circuits, noise and signal distortion from interference can reduce the signal-to-noise ratio to negative values (more noise than signal). This is especialy amplifiers for millivolt-output transducers such as thermocouples, resistance thermometers, strain gauges and microphones. Measurement errors and noise, even up to full-scale deflecion errors in analogue signals are quite RF fields to comply with the EMC
Directive. Digital circuits running software can suffer from false keypresses or control signals, false resets, software looping (continuously repeating a section of code), and stopped execution, commonly called a
'crash'.

Transposition via non-linear function
resulting in a d.c. offset
(more commonly known 'audio rectification' or 'demodulation')

xample of RF noise in a semiconductor circuit
showing demodulation and intermodulation

digital circuits is most likely to occur when
the demodulated RF noise contains a
frequency that coincides with (or is close
enough to) the frequency of a signal or the
rate of certain circuit operations. However,
high enough levels of d.c offset from noise
rectification can alter the biasing of
circuits, both digital and analogue, by
enough to prevent them from working
correctly.
The third interference mechanism is
intermodulation, caused by the same non-
linearities that cause audio rectification.
When more than one RF signal is present
at the same time in a non-linear device,
'intermodulation products' - new
frequencies - are created inside the
circuit itself. The presence of f_{1} together
with f_{2} (for example: 200 MHz and
200.1 MHz) will result in intermodulation
products at f_{1} - f_{2} and at $f_{1}+f_{2}$ (100kHz and
400.1 MHzz respectively, in this example).
Three initial frequencies create eight
intermodulation products in total, and with
four and more initial frequencies the
situation is even more complex. In some
circumstances, intermodulation products
can have high enough levels to cause
'direct interference', as for RF noise
described earlier. Intermodulation products
can also fall into the passbands of audio
and video signals, and instrumentation
circuits, reducing the quality of the output
or leading to false measurements.
EN $61000-4-3$ only applies one RF test
frequency at a time, so can fail to discover
susceptibilities that can occur in real life
due to intermodulation. Real-life
environments usually have significant
levels at more than one radio frequency,
for example the numerous VHF radio
broadcast and UHF TV channels. An item
of equipment that is susceptible to RF
fields, for example at $100 M H z, ~ w i l l ~$
probably be well-protected by its designers
and
their harmonics. Noise frequencies that are close to rates of certain circuit operation operation.

The second type of interference mechanism is audio rectification sometimes called demodulation, semiconductors respond non-linearly to responding more non-linearly than others. The typical semiconductor is often
assumed to have a square-law response at low levels of current. The effect of passing a noise current through a non-linearity is that positive-going waveforms are
amplified more than negative-going - or vice-versa, depending on the polarity of the device - resulting in a level of d.c. ofset that depends upon the level of the RF noise. This process is known as
rectification, and amplitude modulation of the RF signal causes this d.c. offset to vary RF waveform is demodulated, just as it is in a radio receiver.

Rectification (demodulation) occurs naturally in all semiconductors, so every semiconductor can be thought of as an inf set' radio receiver. Integrated circuits can contain many tens, even millions of semiconductor junctions, all waiting opportunity to demodulate RF noise signals.

Many interference problems with audio and instrumentation circuits are caused by the fact that the demodulated noises tend to lie in the same frequency range as the
wanted signals, reducing the quality of the output or leading to erroneous $\quad 1 \mathrm{kHz}$ measurements. In audio circuits te 1 kHz clearly heard over the loudspeakers, earpiece or headset. Interference with
Often, the most extreme electromagnetic
environment that a device, circuit, printed-
circuit-board (PCB) or subassembly has to
face is that caused by other parts of the
same equipment. This is known as intra-
system interference.
Devices, circuits and printed circuit boards
that are designed to be immune to RF
fields will be easier to integrate with other
components of modern products, such as
high-resolution displays, switch-mode
AC/DC and DC/DC power converters,
digital processors, etc. This will save time
and cost by reducing the number of design
iterations ('re-spins') during product
development.
Similar intra-system interference issues
arise for items of equipment that are
placed in close proximity (e.g. inside an
industrial cubicle, or stacked on a bench or
racked in a frame). Once again, ensuring
that each item has good RF immunity
performance, can often help save time and
cost in the development or commissioning
phases of a project.
equipment, so it also a poor test of real-
life performance for that reason.
EN 61000-4-3 is usually used to test from 1000 MHz down to 80 MHz , with EN 61000-4-6 (described in another REO 150 kHz . But many types of equipment use circuits that operate at frequencies below 150 kHz , and are consequently much more susceptible at those frequencies. Conducted noise under 150 kHz can be caused by the
 mode or phase-angle power converters; any 150 kHz (as most are), or when the presence of two or more RF fields at different frequencies create intermodulation frequencies that are below 150 kHz . One way to discover potential
susceptibilities at frequencies below 150 kHz is to test using EN 61000-4-16, which covers immunity from 0 to 150 kHz (and will be covered by another REO booklet). Another way is to test equipment using a range of modulation frequencies for each RF frequency tested using EN
$61000-4-6$ and EN 61000-4-3. The range of modulation frequencies should be chosen to cover the range over which the equipment concerned is susceptible. This method is mostly used by certain military and aerospace organisations at the time of writing, but is not yet commonplace.
The testing should extend up to the highest $R F$ frequencies that the
equipment is likely to be exposed to
throughout its operational life. The third edition of EN 61000-4-3 describes testing higher frequencies military test methods may need to be used.
The three interference mechanisms

unexpected real-life problems due to
demodulation or intermodulation; such as the Saturn launch vehicle safety concerns described in 'Banana Skin' No. 267 [8]. Also see 'Banana Skin' No. 179 [8]

> The levels of the noises caused by demodulation and intermodulation a demodulation and intermodulation are usually assumed to be proportional to the RF field). This means that small variations in the level of the RF field during testing can have a large difference on equipment functional performance, making it difficult to compare the results of different kinds of RF immunity tests.
Since few, if any, real-life radio
transmissions are modulated solely at ksz, by EN 61000-4-3 (and EN 61000-46) is a poor test for real-life susceptibility or reliability. And, as was mentioned
before, the use of a single RF test frequency cannot give rise to any
intermodulation frequencies within the against this RF frequency. But if it is exposed to two simultaneous RF fields at other frequencies (e.g. 1.8 and 1.9 GHz) t is not susceptible to those frequencies individually (or because they were not unnown) the equipment might fail due to the 100 MHz noise generated by the intermodulation in its own circuits.
All transistors are semiconductors, and are used in all analogue and digital integrated circuits as well as in discrete devices (e.g. power transistors). But many other types of devices are also semiconductors, for example: diodes, rectifiers, thermistors (NTC and PTC), and many types of overvoltage protection devices. Ad transient voltage suppression to protect a chip connected to a cable from electrostatic discharge has sometimes increased the chips susceptibility to
miconductors' when corrosion causes a film of oxide to form at joints. This can lead to some very applies only to broadcast receivers and related equipment; it is quite different to EN 61000-4-3 and is not discussed in this
guide. Radiated field immunity testing, in common with radiated emissions testing, suffers from considerable variability of fo suo!u!puov ןeэ!sイud əцł Oł ənp sł!nsə the test set-up. The layout of the
 interconnecting cables affects the RF currents and voltages induced within the EUT to a great extent. At frequencies
 smaller than the wavelength, cable
 layout and termination must be specified in
the test procedure. the test procedure
The basic requirements are an RF signal
source, a broadband RF power amplifier source, a broadband RF power amplifier and an antenna, which are used to generate a field at the EUT's position. But accurate control of the field strength is also required so there must be some
 that is fed to the antenna at each tested frequency. A test house will normally integrate these components with computer control to automate the frequency sweep and levelling functions.
The major concern of standardised immunity test methods is to ensure repeatability of measurements. Immunity testing does not have a defined threshold
that indicates a pass or a failure, like emissions tests do. Instead, a well-defined
level of an electromagnetic phenomena is

A big problem with warranty claims and

field service is the 'no-fault-found'
spend considerable amounts of money to
try to keep their customers happy, despite not knowing what the cause of the problem s. Many no-fault-found problems appear to be caused by inadequate immunity
performance, but interference events are
personnel or customers are EMC experts or have any EMC testing gear). very great indeed, as one UK manufacturer discovered when they spent $£ 100,000$ on ith the new issues of the EMC Directive's mmunity standards around mid-2001 and found to their complete surprise that their new designs saved them $£ 2.7$ million in warranty costs per year.
As can be seen from the above text and
 range of possible RF fields. But complying with any immunity test standards (even the $\stackrel{0}{0}$

 systems, or for equipment and systems ras). This issue is to large to be discussed here, for more on this refer to 12] and the IEE's training course on EMC for Functional safety, high reliability and egal metrology [13]. Also see 'Banana Skin' No. 284 [8]
Signal sources
Any RF signal generator that covers the required frequency range (e.g. 80must match the input requirement of the 'gp мәృ е ло u!bлеш е ч!!м лә!!!!due ләмоd This is typically 0 dBm and is not a
wave, so (for example) a $10 \mathrm{~V} / \mathrm{m}$ test has a peak RF level of $18 \mathrm{~V} / \mathrm{m}$
$\% \mathrm{v}$

distance. This can be specified either directly, or as the gain of the antenna. relationship between antenna gain, power supplied to the antenna and field strength in the far field is: $P_{t}=(r \times E)^{2} /(30 \times G)$ where:
P_{t} is the antenna power input
r is the distance from the antenna in metres
E is the field strength at r in volts/metre G is the numerical antenna gain
[antilog $\left.\left(\mathrm{G}_{\mathrm{dB}} / 10\right)\right]$ over isotropic

The power output multiplied by the
bandwidth is the most important parameter of the power amplifier, and largely determines its cost. The gain of a
broadband antenna varies with frequency,
so the required RF power for a given field strength will also vary with frequency.
Careful selection of antennas can save the considerable cost of more powerful RF amplifiers.

RF power vs frequency for some 'BiLog' antennas

Some signal generators suffer from 'dirty switching', when the frequency and/or as ransient changes in frequency or This is undesirable because the erroneous transient frequencies or amplitudes will be amplified and applied to the EUT, possibly causing the erroneous recording of a

RF power amplifiers

Signal sources do not have sufficient output power to directly drive an antenna with enough power to achieve the desired field strengths at the EUT's position, so an
RF power amplifier is required. The power output needed will depend on the field trogth required the Esors used. As characteristics of the transducers used. As will be characterised for the power needed to provide a given field strength at a set
The high VSWR of broadband antennas,
particularly of the biconical at low
frequencies, means that much of the RF
power from the power amplifier is reflected
back down the cable, rather than being
radiated into the chamber, and this
accounts for the poor efficiency at these
frequencies. Much effort has been put into
antenna development for immunity testing
and the curves for the extended (X-Wing)
models show the advances that have been
made. As with radiated emissions testing,
the plane polarisation of the antennas calls
for two test runs, once with horizontal and
once with vertical polarisation.

[^0]Examples of VSWR of some 'BiLog' antennas

preferable to have them calibrated at the same field strength at which they will be mostly used. Also, it is important to realise that they will give erroneous readings on a modulated signal; accurate level setting must only be attempted on an
unmodulated field.

EN 61000-4-3 specifies the use of the substitution method of power control. This involves pre-calibrating the empty
chamber or cell by measuring, at each frequency, the power required to generate a given field strength. The chamber calibration process is described in the section entitled "Field uniformity" below. The EUT is then introduced and the same power is applied at each frequency. The rationale for this method is that any disturbances that the EUT causes in the field are taken at face value, and no attempt is made to correct for them by monitoring the actual field at the EUT;
 the absence of the EUT is used as the controlled parameter.

This method is only really viable when the field uniformity is closely defined, and this puts great emphasis on the requirements for anechoic lining of the chamber, but given a good anechoic chamber it is much the preferred method. The parameter which is best controlled in the precalibration is the amplifier output power (forward power) rather than the net power supplied to the antenna. Controlling the net power would be acceptable provided that the antenna characteristics were not significantly changed by the introduction of the EUT, which in turn dictates as great a separation distance as possible between antenna and EUT.

- Power gain: full power output must be obtainable from the expected level of across the whole frequency band.

Reliability and maintainability: a typical test facility only has a single RF power amplifier for each frequency range, so when it goes faulty it needs to be quickly
repaired. EN 61000-4-3 includes the requirement to carry out the calibration of the test set-up at 1.8 times the unmodulated test field level, to verify that the power amplifiers introducing compression effects or harmonic distortion and without failing.

Field strength monitoring

It is essential to be able to ensure the correct field strength at the EUT. the EUT Reflections and field distortion by the chamber walls will cause different field strength values from those which would be expected in free space, and these values will vary as the tested frequency is changed.

RF fields can be measured by a broadband field sensor, which usually takes the form of a small dipole and detector replicated in three orthogonal planes, so that the assembly is sensitive to fields of any polarisation. In the simplest extreme, the unit can be battery powered with a local meter so that the operator must continuously observe the field strength and correct the output level manually. A more sophisticated set-up
uses a fibre optic data link from the sensor, so that a copper cable does not disturb the sensors are not particularly linear, and it is

Chamber resonances An alternative to pyramidal absorbers is to
Chamber resonances
A plain shielded room (know A plain shielded room (known as an
'unlined' room) will exhibit field peaks and nulls at various frequencies determined by its internal dimensions. The larger the room, the lower the resonant frequencies of these 'standing waves'. This
phenomenon is exactly the same as that
which causes problems for emissions
tests in shielded rooms. For a room of $3 x$ works out to around 50 MHz .

To damp these resonances the room is lined with absorber material, typically carbon-loaded foam shaped into pyramidal sections, which reduces wall reflections. The room is then said to be "anechoic" if all walls and floor are lined, as is necessary for a compliant immunity test, or "semi-anechoic" if the floor is left reflective. Such material is expensive - a
fully-lined room will be more than double the cost of an unlined one.

$$
\begin{aligned}
& \text { construction of the access door is critical, } \\
& \text { and it is normal to have a double wiping } \\
& \text { action "knife-edge" door making contact all } \\
& \text { round the frame via beryllium-copper } \\
& \text { finger strip. } \\
& \text { The shielded room also helps protect the } \\
& \text { test equipment and ancillary } \\
& \text { instrumentation from the RF field used for } \\
& \text { the testing. The interconnecting cables } \\
& \text { leaving the room should be suitably } \\
& \text { shielded and filtered themselves. A } \\
& \text { removable bulkhead 'connector panel' is } \\
& \text { often provided which can carry } \\
& \text { interchangeable RF connectors and } \\
& \text { filtered power and signal connectors. This } \\
& \text { is particularly important for a test house } \\
& \text { whose customers may have many and } \\
& \text { varied signal and power cable types, each } \\
& \text { of which must be provided with a suitable } \\
& \text { filter. }
\end{aligned}
$$ wood sandwich panels, welded or clamped together. Ventilation apertures will use 'honeycomb' panels, and the room will be windowless. All electrical services entering the chamber will be filtered by special highperformance 'room filters'. The

Radiated RF immunity tests covering the frequency ranges specified by product or generic standards should be carried out in a shielded room to prevent interference to other radio services. Recommended
shielding performance is at least 100 dB attenuation over the range 10 MHz of
$10 \mathrm{~V} / \mathrm{m}$ to less than $40 \mathrm{~dB} \mu \mathrm{~V} / \mathrm{m}$ outside the room. The shielding effectiveness
redre room will be built from modular steel-and-

The test chamber

achieved by the room depends on its ,
the range -0 dB to +6 dB . A variation of
greater than $+6 d B$ is allowed provided it is stated in the test report.

The variation is quoted in this applied field strength is never less than the applied field strength is never less than the
stated level, but it does imply that overtesting by up to a factor of two is possible. For smaller EUTs, a smaller uniform area, for instance 3×3 points giving a 1 m square, may be acceptable. EN 61000-4-3 covers testing at frequencies above 1 GHz , and the types of antennas used at these frequencies have such narrow beamwidths (are very directional) so that they cannot fully illuminate the UFA from one antenna position at any reasonable distance. So alternative methods are given for testing at over 1 GHz , using the 'partial illumination' and 'independent windows' methods with an antenna to EUT distance of 1 m .

Field uniformity measurement

Field uniformity
Absorber linings are not perfect, so there will still be some resonances in the test chamber, and at higher frequencies these can cause significant variation in the field strength over quite a small volume,
certainly smaller than is occupied by the
EUT. As a practical measure of the
effectiveness of anechoic lining - and to
calibrate the field strength that will be used
in the actual test - EN 61000-4-3
specifies a measurement of the field
uniformity to be made at 16 equi-spaced points covering a 1.5 metre square vertical plane, called the Uniform Field Area
(UFA). The measurements are made in the
(UFA). The measurements are made in the
absence of the EUT.

[^1] conditions that are as close as possible to is typical installation, with wiring and cabling following normal practice, and
closed, loaded as it will be in real life, etc.

- and preliminary checking should bear this in mind.

REO can create custom loads to meet

 any requirements

Once the most sensitive configuration has been established it should be carefully defined and rigorously maintained

The default cable length exposed to the test field is 1 m , with excess cable length filtered by a clip-on ferrite and then run close to the metal floor (or walls) of the
anechoic chamber. But if the wiring
practice is specified, then the specified cabling set-up should be used instead. For
 cables is generally unspecified so these are only exposed by 1 m . But where (for example) a printer is being tested, if its manufacturer specifies a 2 m length of printer cable from the computer, and the computer is in the test environment too, then both printer and computer are set up on the wooden table in the chamber with the specified $2 m$ of printer cable between them. If the computer is outside the anechoic chamber and the printer cable
 connector in the chamber wall, then the default 1 m exposed length of cable applies.
yoe» e se yons) 6u!puełs-ıoo!f s! \perp Пヨ əપł I or cabinet) it should be placed on (but insulated from) the floor of the test
 wooden table. The antenna will normally be placed at least 1 m from it, at a greater distance if possible consistent with generating adequate field strength; the preferred distance is 3 m . Too close a distance affects the uniformity of the generated field and also, because of mutual coupling between antenna and EUT, invalidates the basis on which the
the amplitude of the cable resonances -
both can lead to overtesting or
undertesting. Most test laboratories simply
ignore this issue, although some use rows
of ferrite clamps rather than terminating
the cable at the chamber wall. Richard
Marshall Ltd (www.design-emc.co.uk)
have developed a 150Ω chamber exit filter
intended to overcome this problem [14].
It is sometimes found that the external
equipment is susceptible to the RF test
signals that remain on the cables after
passing through the chamber wall, or to
the RF fields in the test laboratory caused
by the powerful RF amplifiers used for the
test. So whenever a performance failure is
observed, it should be checked that it is
due to a failure in the EUT and not in the
equipment used to test it. This is often the
case for sensitive instrumentation (e.g.
noise and distortion analysers,
oscilloscopes, etc.) and for external
personal computers connected to the EUT
using USB or Firewire. Most digital
voltmeters and multimeters are also very
susceptible, so it may be worthwhile
hanging on to those old electronics-free
moving-coil meters - even though they
are not totally immune either.
Always suspect functional test
instrumentation, which might show a fail
result when one is not in fact present, or
might show a pass when the EUT is
failing. The usual way to deal with the
latter issue is to set the EUT up in such a
way that the functional test meter (or
whatever) is indicating a non-zero quantity
(if possible) and then watch it during the
EUTs immunity testing for it to reduce or
increase when it shouldn't do either.
Unshielded cables should be passed
through filtered bulkhead connectors, and
this can cause problems for high-
frequency data (e.g. Ethernet) that uses
ate

ctional performance of the equipment to be tested, especially if it is to be ted in a shielded room with no servers inside. Where performance can assessed visually (e.g. screens and her displays, LEDs and lamps) it is ually checked by careful positioning of e or more shielded video cameras aying their view to monitors outside the t chamber. It may require several ople to watch all of the functional atures on all of the monitors whilst the th is progressing, to avoid long dwell es at each frequency. difications may be needed to the UT's software or hardware to provide the cessary diagnostics via the display. For ample, it often happens that a croprocessor will crash but the display ntinues to show the same image ing the impression that all is well and sting expensive testing time. So plays should always be changing in a y that shows that as much as possible working correctly. Display change rate ould preferably be in the order of twice recond, so that the 'dwell time' at ch frequency can be less than one cond and testing time is not made too (and expensive). here the signals on an existing cable ed to be monitored, the cable should be assed through the bulkhead connectors rovided in the test chamber's connector nel and tested by external strumentation. A problem with this is at the bonding of the cable shield to the all and any filtering applied to the signal ductors alters the termination of the bles from what would occur in real life, nce can alter the EUT's immunity rformance. The effect of the chamber ll terminations and filters is to alter their

control software imposes an overhead and
they can take as long as 30 minutes).
Eight sweeps at 12.7 (30) minutes each
take about $13 / 4$ (4) hours to complete.
For many systems there may be little
sensitivity to sweep rate since RF
demodulation (rectification) itself tends to
have a broad bandwidth, and structural or
coupling resonances are generally low-Q
and therefore several MHz wide. On the
other hand, some frequency sensitive
functions in the EUT may have a very
narrow detection bandwidth so that
responses are only noted at specific
frequencies. If the sweep rate through
these frequencies is too fast (or the step
spacing is too great) then a response may
be missed. Such narrowband susceptibility
may be $25-30 \mathrm{~dB}$ worse than the
broadband response. Therefore some
knowledge of the EUT's internal functions
is essential when setting the dwell time, or
considerably more complex test
procedures are needed.
Monitoring the EUT for
performance degradation during
testing
The functional performance degradation
allowed during and after conducted RF
immunity tests may be specified by
product-family standards (e.g. EN 55024),
but if applying the generic standards EN
$61000-6-1$ or EN $61000-6-2$ all that is
necessary is that the performance is no
worse than the specification in the
manufacturer's 'data sheet' for the
equipment - which should represent what
its users would find acceptable given the
marketing claims for the equipment.
The parameters which have been chosen
 be continuously monitored throughout the
sweep, preferably by linking them to an automatic data capture and analysis system - although the test engineer's eyes still remain one of the most common
monitoring instruments.
For most types of electronic equipment, a
total of eight sweeps are needed - one in each polarisation of the antenna, with each of the four sides of the EUT facing the antenna. If the equipment can be used in any plane, such as a portable handset, nd bottom facing the antenna, requiring twelve sweeps in all.

Sweep rate, dwell time and step

The Sweep rate is critical to the test time,
and hence the cost of the test, but also it affects the performance of the EUT. According to EN 61000-4-3, the signal generator should either be manually or

esponse of the EUT. Alternatively, it can be automatically stepped at this rate in frequency is 1.01 times the previous one, so that the steps are logarithmic.
The dwell time for stepped application she EUT to fully respond (if it is going to) and for its response to be measured with sufficient accuracy to determine pass or fail. EUTs with slower responses therefore require a longer test time. As an example, to cover the range $80-1000 \mathrm{MHz}$ with a step size of 1% and a dwell time of 3 s at 12.7 minutes (although in practice the
be able to be multiplexed quickly, so that
all are tested in sequence during the dwell
time at each frequency. Sometimes a
equipment runs through a sequence of
states or functions that can be speeded up
to shorten radiated immunity test times,
often by removing wait states from the
software.
So it is quite common to create special
software for EUTs intended for radiated
immunity testing, to shorten the test time
and reduce testing costs. Few test
laboratories would challenge such
software and would merely record the
software version number in their test
report. It appears that a few engineers
write this special software in such a way
as to make their equipment appear to
have greater immunity than it would have
when using the software that is normally
supplied to users. Cheating at the tests
may enable a pass report to be obtained
from a prestigious test laboratory, but
leaves the equipment itself open to
compliance challenges.

A first draft of the proposed IEC 61000-4$33^{\text {rd }}$ Edition was circulated in January
 Vote" (CDV) - IEC 77B/429/CDV. It its main differences from EN 61000-43:2003 are...

- It covers testing up to 6GHz

- It covers testing in stirred-mode or
reverberation chambers

If this CDV passes its vote and is adopted as IEC 61000-4-3 3 rd Edition, and is then
 the version of the test method called up by EMC product or generic standards.

Section 10.2.5 of [16] describes the methods that Competent Bodies have developed for on-site testing for radiated
immunity: immunity:

Reliance on the radiated immunity test results for individual items of equipment, actual site testing at all).

Using licensed radio transmitters (see the section on 'Alternative transducers' below) and possibly get a special
transmitting license for the site for
transmitting license for the site for the
period of the tests.

Some types of equipment employ very
long time constants, and it may be
changing their EMC characteristics - in
which case lengthy testing times may be
necessary. Where a equipment has
multiple functions, a test could be done on
each function in turn, or the functions may

REO isolating transformer with low primary to secondary capacitances

 and electrically bonded to the tent'sshielding surface all around its perimeter. shielding surface all around its perimeter. through the wall of the tent via throughbulkhead connectors mounted on the connector panel.

A selection of typical REO Filters for

 AC supplies

 used to help reduce electric shock ' 'high hazards. It is best to choose special 'h isolation' types of transformers, which have a very low value of primary-to 0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0 surge levels (at least 6 kV , using the IEC 61000-4-5 test method) to help ensure safety.
parts of EN/IEC 61010-1, at least
Alternative transducers and test methods always try to reproduce the final assembly always try to reproduce the final assembly
of the circuit being tested（shielding，earth bonding，proximity to metal objects or structures，etc．），as the stray inductances
and capacitances in the final build state can have a dominant effect on the RF can have a dominant effect of the circuit．And always
 set－up in the test documentation （Inłəsn Kıəィ әq ueə sudeıбоłочd）

 are very different to EN 61000－4－3－
 $4-3$ methods as far as possible．For

$$
\begin{aligned}
& \text { Use RF fields or test signals that are } \\
& 80 \% \text { amplitude-modulated by a } 1 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
& \text { - Set the EUT and its cables up in } \\
& \text { according to EN 61000-4-3 (as far as }
\end{aligned}
$$

zHY 'əлемәu!s their equivalence with the＇proper＇ anechoic method has been established．

For all but compliance and＇pre－
compliance＇tests，using an uncalibrated
Mode－stirred or reverberation chambers test equipment（for which the quantitative measurement is not traceable to the national physical standards）is not very mportant．But it is very important for any ests to be repeatable－so consistency is always required in the test equipment and
test methodology． test methodology． semiconductors to RF fields described earlier．
Alternative test methods that are not mentioned in EN 61000－4－3 are briefly mentioned below．For more information on hese，refer to［18］

－イןəハ！つədsə」 G66レ：カ－ZGカレレ OSI pue

Even having EN 61000-4-3 fully applied by accredited test laboratories cannot guarantee that a given EUT and its cables will be exposed to exactly the same RF stimuli (say, within $\pm 3 \mathrm{~dB}$) each time it is tested. So, because of the non-linear sensitivity of analogue and digital circuits to RF (see above) and because seriallymanufactured equipment has variable
 and assembly tolerances (often uncontrolled for EMC), an 'engineering

아 łuәud!!nbə əlduexə ue бu!!sə иәчM

 instead of $3 \mathrm{~V} / \mathrm{m}$) is suggested, with the

 compared with EN 61000-4-3, a larger
The need for engineering margins

It is clear that saving costs by using alternative conducted RF immunity test
methods can lead to over-engineering. łuәud!nbə әपł әуеш ol \ddagger soo ןeuo!!!ppe әЧ।

 weighed against the cost of doing the testing properly.

There is a strong drive to make the GTEM an official alternative to the anechoic so the correlation between the two has often been tested. Although it is possible to show that some individual GTEM sites give results which correlate with an uipment no general correlation can yet be made. Golden product test methods are still recommended where GTEMs are used for testing related to compliance.

Striplines, IEC 801-3, current injection methods (BCI, EM Clamp), and the wide variety of proprietary test cells and compact chambers probably fall between close-field probes and GTEMs. They may well be able to be correlated for a specific equipment (or even a type of equipment) - if the testing is done by a skilled tester who is aware of the differences between
the test method used and EN 61000-4-3.

When an alternative radiated RF immunity test method is used for design,
development, or troubleshooting after a test failure, repeatability is very important but the correlation with EN 61000-4-3 is less so. All such tests will need to follow a procedure that has been carefully worked out to help ensure that adequate repeatability is achieved.

When alternative methods are used as part of a QA programme, or to check variants, upgrades, or small modifications, a 'golden product' is recommended to act as some sort of a 'calibration' for the test product techniques allow low-cost EMC test gear and faster test methods to be used with much more confidence. Refer to section 1.9 of [19] for a detailed description of how to use the golden product correlation method. If alternative methods are used to gain sufficient confidence for declaring compliance to the EMC directive, the golden product method is very strongly recommended. Without a golden product or some similar basis for correlating an EN 61000-4-3 test with the alternative method
used, the alternative methods can only give any confidence at all if gross levels of overtesting are applied, and this could
result in gross levels of over-engineering. Refer to 1.9 in [19].

The closer a test method is to the actual EN 61000-4-3 test method, the more likely it is that a good correlation will be
achieved. So testing with a close-field probe (for example) can probably only be correlated on a particular build state of can often be correlated for a type of equipment (e.g. laptop computer, cellphone, etc.).

During design, development or QA testing, always try to reproduce the final assembly of the equipment being tested (shielding, tructures, etc.), because the stray inductances and capacitances in the build state can have an important effect on the immunity of the equipment. And always carefully record all the details of the test (photographs can be very useful)
[19] "EMC Testing Part 1 - Radiated Emissions", Tim Williams and Keith February 2001, pp 27-39, download it via the link from http://www.complianceclub.com or http://www.complianceclub.com/keith_armstrong.asp.
EN and IEC standards may be purchased from the British Standards Institution (BSI) at: orders@bsi-global.com. To enquire about a equipment or service call BSI Customer Services on +44 (0)20 8996 9001 or e-mail them at cservices@bsiglobal.com. IEC standards may be purchased with a credit card from the online bookstore at www.iec.ch, and many of them can be delivered by email within

[13] "The IEE's Training Course on EMC
for Functional Safety (also for high-
reliability and legal metrology)", visit
http://www.iee.org for their event calendar
to check the date of the next course. If no
courses are listed contact the IEE's
Functional Safety Professional Network
(via the same IEE homepage) and ask.
[14] "Chamber Exit Filters for Radiated
EMC Testing" Richard Marshall,
EMC2000 Conference, York 10/11 July
2000, www.yes.co.uk. Information on
these filters also at: http://www.design-
emc.co.uk .
[15] "EMC Testing Part 3 - Fast
Transient Burst, Surge, Electrostatic
Discharge" Keith Armstrong and Tim
Williams, EMC Compliance Journal June
2001, pages 19-29, download it via the
link from http:///www.compliance-club.com
or http://www.compliance-
club.com/keith_armstrong.asp.
[16] "EMC for Systems and Installations",
Tim Williams and Keith Armstrong,
Newnes 2000, ISBN 0-7506-4167-3, RS
Components Part No. 377-6463.
[17] "EMC for Systems and Installations
- Part 4 - Filtering and Shielding", Keith
Armstrong, EMC \& Compliance Journal,
August 2000, pages 17-26, download it
via the link from http://www.compliance-
club.com or http://www.compliance--
club.com/keith_armstrong.asp.
[18] "EMC Testing Part 4 - Radiated
Immunity", Tim Williams and Keith
Armstrong, EMC \& Compliance Journal
August 2001 pp 22-32 and October 2001
pp 16-20, download via the link from
http://www.compliance-club.com or
http://www.compliance-club.com/
keith_armstrong.asp.

Solar transformers

Soft-starts

Chokes, resistors and

Phase-angle and frequency

Medical Transformers

REO - Market Sectors

Power supplies and load banks

Filters and braking resistors

[^0]: Antennas

 periodic types - providing care is taken ans during ठu!̣np pəsn sıəмоd чББ! әЧł Кq рәбешер transformers used at their feed points limit antenna power handling ability. A balun is a wideband ferrite cored 1:1 transformer which converts the balanced feed of the dipole to the unbalanced connection of the coax cable from the test equipment (hence bal-un). It is supplied as an

 very slight. Nevertheless some of the power delivered to the antenna ends up as heat in the balun core and power the antenna can take.

[^1]: The UFA corresponds to the position of the
 front face or one of the other three sides of the EUT during actual testing. For the chamber to be acceptable, the variation in the field strength of 75% (i.e. 12) of the

