emc sTANDARDS

Another EMC resource from EMC Standards

A Practical Guide for EN 61000-4-16: Common-mode disturbances in the frequency range 0 Hz to 150 Hz

Contents
N

What to do when new versions of basic test standards are issued	5
What are $0 \mathrm{~Hz}-150 \mathrm{kHz}$ CM disturbances, and how do they arise?	6

O | What kind of equipment is covered? | 10 |
| :--- | :--- |
| Full compliance immunity testing using EN 61000-4-16:2000 | 12 |
| On-site testing | 29 |
| Preventing the tests from causing (or suffering) interference | 29 |

Alternative men
Correlating alternative test methods with EN 61000-4-16 34
Determining an 'engineering margin' 34
'Test As Real Life' (TARL) for low warranty costs, other financial 35 benefits and safety

$$
\text { TARL and real-life } 0 \mathrm{~Hz}-150 \mathrm{kHz} \text { CM disturbance possibilities }
$$

In-service failures and $0 \mathrm{~Hz}-150 \mathrm{kHz} \mathrm{CM}$ disturbances
References
Recommendations' [7-12], which number of such tests in the military EMC Standard MIL-STDE-461E [13] and DEF
 manufacturers often specify immunity tests with sinewaves below 150 kHz , suited to electronic sub-assemblies they purchase. Important Safety Note: As a general rule, people whose health depends on the co operation of pacemakers or body-worn or implanted electro-medical
devices should never go near any EMC mmunity tests or their associated test equipment.
 EMC specifications imposed on the supplier by the purchaser, to help ensure that a particular 'fixed installation' complies with the Essential
This booklet is part of a series that
 phenomena in residential (residential, household, etc.), commercial, light industrial and industrial environments, and how they are tested according to appropriate EN standards on emissions

 military, and other special environments. Some industries have developed their own immunity test standards for EM
 own particular requirements. For example the International Telecommunication

Applying EN 61000-4-16 or similar immunity tests which go beyond the minimum requirements of the EMC Directive's listed product and generic standards can help make equipment more reliable, reduce warranty costs, improve customer satisfaction and reduce exposure to product liability claims. This ssue is addressed in the section on 'Test As Real Life', later.

The second edition of the EMC Directive, 2004/108/EC [5], replaces [3] on the $20^{\text {th }}$ July 2007. Equipment already being supplied in conformity with 89/336/EEC will be allowed to be supplied until $20^{\text {th }}$ July 2009, by which date it too must comply with [5] if it is to continue to be supplied in the EU. Whereas [3] requires the involvement of a Competent Body with all TCFs, [5] effectively allows the TCF route to be used with the optional involvement of a Notified Body (the new term for Competent Bodies under [5]).

Like 89/336/EEC, 2004/108/EC [5] also

requires equipment to comply with its Protection Requirements, given in its

 is recommended that all equipment
manufacturers assess the electromagnetic (EM) environment of their equipment [4] and ensure that it is designed and/or tested accordingly.

Under 2004/108/EC, all 'fixed installations' must comply with its Essential

Requirements, and they must also have documentation that shows how this has been achieved using good engineering practices. Equipment manufactured specifically for use at a named 'fixed with installation may not have to comply with supplied - but testing to EN 61000-4-16 at specified levels could be one of the

When using the Technical Construction File (TCF) route to conformity with the EMC Directive (Article 10.2 in [3]) it is possible to use EN or IEC 61000-4-16 directly, in which case it should be listed on the equipment's EMC Declaration of Conformity. In such cases the equipment manufacturer should assess the electromagnetic (EM) environment of the equipment [4] and ensure that it is designed and/or tested accordingly, so as o comply with the EMC Directive's Protection Requirements (Article 4 of [3]). Compliance with the EMC Directive's essential Protection Requirements applies in addition to the requirement to follow one of the conformity assessment routes (Self, Taration, Artie Articl 10.4 of [3]). Equipment that passes tests to all relevant product or generic standards that are listed
 is unreliable or fails in normal use because is is not immune enough for the real-life EM
environments in the applications it is intended for - does not comply with the ョコ К Requirements and is therefore illegally
, even when the Self-Declaration Route is being followed, equipment manufacturers are recommended to assess the electromagnetic (EM) environment of the equipment [4] and ensure that it is designed and/or tested to Requirements (Article 4 of [3]). Where an item of equipment could be affected by CM disturbances in the range 0 Hz to 150 kHz in normal operating environments - it may prove necessary to apply EN 61000-4-16 (or similar) in order to comply with the comply with the EMC Directive.
CM voltages and currents are those that affect all of the conductors in a given
 connected together by a data cable, but

 earth/ground potential difference as a CM voltage on all of its conductors at the
same time.
 ε əsneןว u! pəq!วsəp əıe səouequns!p and Annex A of EN 61000-4-16. The principal cause is the electrical power :əoınos
 servers', etc.
 example) 3,000 PCs and 3,000 building's safety earth/ground structure can be as high as 21A. Some commercial buildings have been
measured as having as much as 70A of leakage current in their safety
earth/ground due to the use of large numbers of personal computers

 they are present all of the time, although they may vary from time to time as the numbers of items of 'leaky' equipment
varies or as cables are moved.
Faults in the electrical power system cause much higher levels of commonimpedance coupling - but only for a short time, until the relevant overcurrent protection devices (e.g. fuses, circuit-

 generally assumed to be about 1 second.
 conductor - applying the full supply voltage to it. This is more likely to afflict a single conductor, when it will appear as
differential-mode (DM) interference rather differential-mode (DM) interference rather
than CM. The current consumed by such than CM. The current consumed by such cause the overcurrent protection devices to operate, so they can remain in place for several minutes, maybe even for days, months or years. This is often called a 'power cross' fault, and is not covered by
 However, there are standardised tests used by some telecommunications
 telephone wires for at least one minute [7운

Emissions of electromagnetic noise at
controlled by most of the standards listed under the EMC Directive, and as a result

control them. For example, the author has

CM noise voltages $0 \mathrm{~Hz}-150 \mathrm{kHz}$ due to earth/ground impedance

EN 61000-4-16 does not mention EN 61000-4-16 does not mention cource of professional audio systems as a source of for hearing aids (the 'T-coil' setting) in public places generate quite powerful audio-frequency fields up to several kHz, significantly with co-located video systems and other equipment. Powerful speaker

 The immunity of AC power ports to differential-mode (DM) mains harmonics, interharmonics and signalling voltages is covered by EN 61000-4-13 [6], but there are no standards in the IEC 61000-4 series for immunity to continuous CM or DM disturbances below 150 kHz for signal,
data or control ports. The immunity of all yata or of ports to continuous CM
disturbances above 150 kHz is covered by

[^0] currents consumed by electronic and other non-linear loads, the coupling described
above is not limited to the fundamental frequency of the supply (e.g. 50 Hz) but includes its harmonics - generally considered to be significant up to 2 kHz . Apart from the electrical power supply, another cause of CM disturbances mentioned by EN 61000-4-16 is power
 converters with DC or AC outputs. These employ high curre the the lactrical power frequencies other than the electrical power cable ports as a result of stray
capacitance, stray mutual inductance, and
leakage currents (common-impedance coupling) as described above. Variable-
 output frequencies that are below 15 Hz , and some of them can be very powerful indeed (e.g. MW) but for some reason EN 61000-4-16 ignores such low frequencies.

This issue is briefly covered by Clause 3
of EN 61000-4-16, which says that CM f EN 61000-4-16, which says that CM
disturbances from DC to 150 kHz can "..influence the reliable operation of equipment and systems installed in residential areas, industrial areas and electrical plants." The author does not know why commercial, entertainment, medical, healthcare or military areas were omitted from this list despite suffering from exactly the same problems with CM disturbances below 150 kHz .

The DC and low-frequency CM disturbances covered by EN 61000-4-16 cause CM noise to appear in the circuits associated with the cable ports.
Depending on the design of these circuits, a proportion of the CM noise is converted into DM noise in the wanted signal. Depending on the circuit design, this DM noise might cause the circuit to function
outside of its specification, malfunction, or even suffer permanent damage.

Continuous CM disturbances are not generally expected to cause actual damage to circuits (although they can, and damage to equipment controlled by the circuit might occur). But short-term
CM disturbances can have much higher levels so are much more likely to damage circuit components.

It is impossible to be any more precise about the types of errors, malfunctions or damage that can occur due to CM disturbances below 150 kHz . This is because they depend entirely on the design of the circuits, the signals they are processing, the functions they are
providing, and the applications they are

EN/IEC 61000-4 series call all cable connections 'ports'). According to Clause 3, ports that are not ikely to be subjected to the EM
phenomena covered by EN 61000-4-16 need not be tested. This is considered to mean ports connected to cables that are less than 20 metres long.

Although the frequency range covered by his standard is 0 Hz plus $15 \mathrm{~Hz}-150 \mathrm{kHz}$, Clause 1 says that it does not cover the disturbances covered by 400 Hz power
 400 Hz generators may need to apply other standards as well (or instead), see [15]. The examples given in Annex B are all based on industrial sites and power plants.
 in residential, commercial and light industrial areas, which might explain why there are no such examples of such sites given in EN 61000-4-16.

However, the author's opinion is that any
 control cables connected to it can in fact be exposed to CM voltages in the range 0 Hz to 150 kHz , wherever they are used, because the way that electrical and electronic equipment, including the electricity supply network, is generally constructed and installed is similar in all

For example, at one extreme the only
 increase in the hum level in an audrol of a powerful industrial robot could be lost, causing damage to the workpiece and financial loss. (It is assumed that the designers of the robot, and similar taken equipment and systems, will have taken safety design, so that safety risks are not increased.)

EN 61000-4-16 doesn't cover all possible types and levels of CM disturbances below 150 kHz (see the TARL sections below), and some other types or levels can be more harmful to circuit operation and equipment functionality, and also more likely to cause damage to circuit components.
of the direct-on-line motor control in
household appliances, to save energy. But a very powerful driving force in all of these
applications is low purchase cost. So - ignoring those manufacturers who sell CE marked equipment that does not comply (typically over half of them, according to official figures) - we can expect all of the manufacturers of such devices and the equipment, appliances mains filters that just about meet the minimum requirements of the emissions as did the very professional manufacturer of the very costly machining centre in the example above). In other words: they will not even try to control their emissions below 150 kHz .
The result of this is that we can expect 150 kHz to become very much noisier, in every type of location, during the next 10 to 15 years. If testing to EN 61000-4-16 was not considered necessary in certain types of application (e.g. residential) in the past, probably not be true in the near future
Full compliance immunity testing using EN 61000－4－16：2000
standards．When applying EN 61000－4－16 without the guidance of a product or解解 the appropriate Test Level is given in its Annex B．As mentioned earlier， this advice restricts itself to industrial and power plant applications，so the guidance
below extends to residential，commercial below extends to residential，commercial
and light industrial areas： －Test Level 1 is considered appropriate for＇well－protected environments＇，such as a computer room or TV studio，where isolating transformers and all electrical and electronic equipment is earthed to an earthing／grounding system in the soil
In the case of DC power，the DC would be derived from batteries supplied by rectifiers supplied via isolating transformers from the AC electrical
distribution network，or from an isolate distribution network，or from an isolated
generator． －Test Level 2 is considered appropriate for＇protected environments＇，where all electrical and electronic equipment is
connected directly to the low voltage
 1 kV rms，e．g．230／400V），and is earthed
to an earthing／grounding system in the to an earthing／grounding system in the
soil underneath．
The example given is of a control room located in a dedicated building of an

$\overline{0}$
0
\vdots
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
\vdots
\vdots
\vdots

employed．
：2000

Introduction

This booklet is not a complete recital of everything that is in EN 61000－4－16，only
 to this standard should have a copy of the
relevant edition，and any relevant relevant edition，and any relevant
amendments，and follow it／them ex
The test stimuli and their levels

 voltage with a low value of AC ripple；or a low－distortion unmodulated sine－wave voltage between 15 Hz and 150 kHz ．In cases they are applied from a source
impedance of 150Ω ．
At the frequency of the electrical power
 60 Hz ）the test stimuli are applied as both
continuous and short－duration
disturbances．Otherwise，over the
 stimuli are applied as continuous
disturbances only．

frequency of the electricity supply（see Clause 5．1）
frequency of the electricity supply（see
Clause 5．1）

frequency range 15 Hz to 150 kHz （see
Clause 5.2 ）
$\mathfrak{\ddagger}$ sə ગ！seq e s！9l－t－000l9 Nヨ əsneวəg łonpoud әЧł łечł pəunsse s！！！！＇pıepuełs

$$
\begin{aligned}
& \text { in certain types of application (e.g. } \\
& \text { residential) in the past, this may no longer } \\
& \text { be true, and will probably not be true in the } \\
& \text { near future. } \\
& \text { All equipment ports that could be } \\
& \text { connected to long signal, control or data } \\
& \text { cables should generally, in the author's } \\
& \text { opinion, be tested for their immunity to CM } \\
& \text { voltages from 0Hz to 150kHz. Also, the } \\
& \text { author generally recommends testing all } \\
& \text { ports that could be connected to other } \\
& \text { items of equipment - where that other } \\
& \text { equipment might connect to signal, control } \\
& \text { or data cables longer than } 20 \text { metres, or } \\
& \text { be powered from a different electricity } \\
& \text { supply. } \\
& \text { A curious situation arises with regard to } \\
& \text { power generating and distributing sites. } \\
& \text { [16] states that testing to EN } 61000-4-16 \text { is } \\
& \text { 'generally not required' in 'special } \\
& \text { situations' such as power plant, whereas } \\
& \text { EN } 61000-4-16 \text { itself specifically states } \\
& \text { that it is required. It seems clear (to the } \\
& \text { author at least) that power plants are } \\
& \text { examples of industrial sites, and also that } \\
& \text { the levels of electromagnetic disturbances } \\
& \text { in such sites can be very high indeed, } \\
& \text { especially those occurring at the frequency } \\
& \text { of the power supply. So it would seem that } \\
& \text { [16] is wrong and CM voltage tests up to } \\
& 150 \mathrm{Hzz} \text { should be applied to all ports of } \\
& \text { power plant equipment that could be } \\
& \text { connected to long cables. }
\end{aligned}
$$

0Z иечł дәбиоן sイемןе әле səןqеэ su！ew metres，so this means that CM voltage suo！snjox＇łuәud！nbә fo suod sumem әपł may be possible for individual items of рәғеэ！рәр Кq рәләмод әле ңечł łиәшd！nbə mains－isolating transformers（such as are typically used in linear power supplies）－ but these might need to have a short－term primary－secondary isolation voltage rating in excess of 3 kVrms （see Note 3 to Table 5 of［17］）．

Telephone cables connected to the public telephone network are always longer than 20 metres，so all such ports should be tested with CM voltages．The telephone industry has its own standards［7－12］for such tests，so EN 61000－4－16 may only need to be applied where its requirements are tougher，or where the telephone industry standards have not been fully applied．

It is easy to find numerous other types of signal，control or data cables that could residential，commercial，entertainment， agricultural and light industrial environments－for example：burglar alarm systems；access control systems； heating，ventilating，air－conditioning （HVAC）systems；lighting control systems； the internal telephone lines of PABXs； professional audio and video systems， many other types of audio and video distribution systems．

As mentioned in Section 3 above，because switch－mode power converters（especially variable speed motor drives）will soon become widespread in all environments， including residential，we can expect the electromagnetic environment below 150 kHz to become very much noisier in
every type of location．If testing to EN
Kıessəวəu рәләр！suoэ дои sem 9L－t－00019

Test Level X is called an 'open' specification. Basic test method standar cannot possibly deal with all eventualities, so the ' 'X' specifications can be chosen by the product or generic standard committee if they feel they are more appropriate for the type of equipment covered by their standard. The x levels can also be the specified by a purchaser (usually in the echnical specification that forms part of their contract with their supplier), often based on an EM survey of a particular area or site.

Annex B also mentions that EN 61000-2-5 [17] provides guidance for the applicability of the tests and selection of test levels. Figure 5 of [17] covers induced voltages
 Test Levels bear no resemblance In EN whatsoever 0 . $61000-4-16$. Figure 8 of [17]] covers
induced voltages from $10 \mathrm{kHz}-150 \mathrm{kHz}$ in this case its Test Levels 2 to 5 correspond with EN 61000-4-16's Test Levels 1 to 4 (respectively), but only over he frequency range 15 kHz -150kHz
 (from Table 3 of EN $61000-4-16$)
DC tests are applied using each polarity in -(рлериеъs э!ぇәиә6

The test shall be applied repeatedly until

Level	Open-circuit test voltage (V rms)			
	$\mathbf{1 5 H z - 1 5 0 H z}$	$\mathbf{1 5 0 H z} \mathbf{- 1 . 5 k H z}$	$\mathbf{1 . 5 k H z - 1 5 k H z}$	$\mathbf{1 5 k H z} \mathbf{- 1 5 0 k H z}$
1	$1-0.1$	0.1	$0.1-1$	1
2	$3-0.3$	0.3	$0.3-3$	3
3	$10-1$	1	$1-10$	10
4	$30-3$	3	$3-30$	30
X	Special (see below)	Special (see below)	Special (see below)	Special (see below)
If using an analogue sweep, the sweep rate should not exceed 0.01 decades per second				

 when testing equipment functions that have long time-constants
requirements of the generic emissions standard EN 61326-1 (or else EN 61000-6-3 emissions being measured on it's DC and AC output ports as well as on its input ports

If you mean to buy a test generator, check that the supplier guarantees its compliance with EN 61000-4-16 and (ideally) supplies it with a calibration certificate from an independent calibration laboratory that is accredited for such calibrations by a national accreditation body (in the UK UKAS). You should then check the
calibration data against the specification in Clause 6 of the appropriate version of EN
61000-4-16 including any amendments.
Also it is a good idea to only purchase
equipmentar to
manufacturer to comply with the EMC
standard EN 61326-1 (or similar standards,
such as the generics, or EN 55022 and
55024) for both emissions and immunity,
11). Better still, check the actual EMC test
data to improve confidence in the truth of the manufacturer's claims.

> The principle of the test generator for a.c. supply frequency tests (from EN 61000-4-16 Table 1 and 2)
(could instead use a signal generator and power amplifier)
Variable transfomer or
influence the test results. But this ignores the possible effect of emissions from the generator's output terminals on the correct operation of the equipment under test (EUT). So this booklet suggests that the test generator should meet the
radiated and conducted emission лоұеләиәб әЧł дечł sКеs 9L-t-00019 Nヨ should have provisions to prevent the emissions of disturbances that, if injected into the power supply network, might te
th
ra
The test generators used by EN 61000-416 are simply DC or sinewave sources. Clause 6 of EN 61000-4-6 specifies the characteristics of the test generators, with separate specifications for the DC and
supply frequency generators (for both the continuous and short-term tests), and specifications for the continuous tests
specifications are not difficult to achieve using ordinary technology, and are not repeated here. If you want to make your own generator - which is not difficult, purchase a copy of the standard.

Continuous Test Levels in the range 15 Hz to 150 kHz

Continuous Test Levels in the range 50 Hz to 150 kHz (from EN 61000-2-5's Table 5 and 8)

The principle of the test generator for $15 \mathrm{~Hz}-150 \mathrm{kHz}$ tests
(from EN 61000-4-16 Table 3)

Examples of variable transformers
from REO

It is good practice for a calibration aboratory to inform the owner if the test generator was out of specification before they recalibrated it - and if this occurs it will call into question the validity of all of the tests since its previous calibration. To avoid this potential embarrassment, most good test laboratories will verify the performance of a test generator several
 the rate of verifications if the test generator is transported (e.g. when testing on a customer's site instead of in the trauma such as being dropped or having
coffee spilt into it. The best testing
practices require the test generator's
performance to be verified before each
time an EUT is to be tested, or at least at the start and end of every day on which it is used.

Safety Note: When measuring voltages or currents, only use probes and equipment hat have been approved by an independent safety testing body (e.g. BSI, VDE, TUV, UL, CSA, etc.) to all of the appropriate parts of EN 61010 for the appropriate 'Measurement Category' (previously known as 'Overvoltage Category' or 'Installation Category'). Measurement Category II is the minimum requirement, and Category III or even IV may be required for safety.
Figure 5 of EN 61000-4-16 shows the recommended design for the coupling
network for balanced signals (e.g. telephone and microphone cab' is it calls the "T Network". The 'T' is
presumably short for 'Telecommunication'. Although this design appears to include a decoupling device - a bifilar wound 38 mH CM choke - in fact such a choke only
achieves a CM impedance of about 12Ω at
 intended to help prevent the coupling network from degrading the CM rejection of the EUT's port at frequencies above
 at all.
Coupling networks are invasive. Similar
test standards such as EN 61000-4-6 [6] permit the use of current injection clamps
instead of invasive direct injection via instead of invasive direct injection via
CDNs, but such alternatives are not pınom pue ' $91-t-000$ L9 Nヨ Кq pəuo!

 supplies, signals, data and control, and
 single-ended signals or high-speed data
lines whether single-ended or balanced. EN 61000-4-16 recognises that the CDNs
can have a bad effect on the signal,
control and data signals, so requires signals to be measured and their new
conditions be taken as the reference (which in some circumstances may prove

 for some types of signal, data or control
ports. Unlike similar standards such as EN 61000-4-6 [6], EN 61000-4-16 does not
 of its coupling networks. The author has
tried to derive a specification from the

 coupling resistance of 100Ω. So if the
 30 Vrms (say) - the maximum total current
it can output into a port, however many conductors are associated with that port, is

Shielded cables have the output of the test

 be injected with three imes as much as the current, at frequencies above 12 kHz , as the coupling network.

Because there are no coupling capacitors
 frequencies below 12 kHz the shield cu
could be much higher than would be could be much higher than would be instance, with a test stimulus of 30 Vrms at
 әq pinom iofonpuoo ןeu6is əן Бuis e पІІМ Hod
 ә૫ł ənq ‘suı \forall m69 әq pınoм मod ןeub!s maximum current that could be injected directly into a shield is 600 mA rms.

 of their coupling networks connected directly to the reference ground, thereby
 100Ω when testing with DC (coupling capacitors shorted out), and at frequencies
 150Ω when injecting a test stimulus into a port, but 100Ω when not testing a port. compatible with EN 61000-4-6 [6] at 50 kHz , where the two standards overlap, because this uses 150Ω for both situations.

Injecting the test stimulus via a coupling/decoupling network
 If you don't understand exactly what the above paragraph requires, have someone who is qualified and competent in this area sort it out for you. In some installations, special working procedures may be required. Electrical and electronic engineers are killed every year by accidental electric shocks - don't you or your colleagues!

Coupling/decoupling networks
The test generators inject their output
 means of a coupling/decoupling network CDN for each type of cable port tested. Clause 6.3 and Figures 5 and 6 of EN $61000-4-11$ describe the design of these networks, and show how they should be
used.
Shunt and Series CM chokes
Combining series and shunt chokes together achieves much higher attenuation
than is possible with either type on its own

Safety Note: It is easy to make perfectly
effective coupling and/or decoupling
networks yourself, due to the low
frequencies and low powers used in these
ens - bons the safety design techniques in
conditions the safety design techniques in
the voltages associated with the cables
could exceed $33 \mathrm{Vrms}, 46.7 \mathrm{~V}$ peak, or 70 V
dc. If it is very humid or there is water around, or the possibility of large-area
skin contact exists, safety design
techniques should be employed at much

energies can cause fire and explosion hazards, so the EN 61010 safety design the current could exceed 10A, the power could exceed 240 VA , or the current that could flow through a person could exceed
0.25 mA . 0.25 mA .

- A voltage withstand capability of at least

1 kVrms at the mains frequency, for at least one minute (less, if it will not be
used to test at Level 4 - a saty this
warning label is recommended to this effect)

- CM attenuation of at least 60 dB over the
range 15 Hz to 150 kHz .
Radio frequency decoupling networks are usually series-connected CM chokes, but at frequencies below 100 kHz it becomes increasingly difficult to achieve sufficient attenuation from such devices. 'Shunt' CM chokes (which create a low CM
impedance to ground) can be combined with series CM chokes (which create a
high CM impedance in series) to improve decoupling performance.

But of course no CM choke can possibly provide any decoupling when testing with DC. Other CM decoupling techniques are necessary for the very low frequencies
and DC, including...

- Isolating transformers for signal, data, control or AC power - Amplifiers - Opto-isolators

These can be used in conjunction with CM chokes to provide adequate decoupling 150 kHz .
designs given in Figures 5 and 6 of the standard, but all that it is possible to say is the test generator's output and the tested port (with all of it conductors connected together) should be..

- $100 \Omega+1-10 \%$ over the range 12 kHz to 150 kHz
- $100 \Omega \pm 1 \%$ at DC (with the series
- and -
- For balanced coupling networks, the

10 dB higher than the specified balance for the signal port.

- The voltage withstand capability should be at least 1 kVrms at the mains (less, if it will not be used to test at Level 4 a safety warning label is recommended to this effect)

Unfortunately, for tests between 15 Hz and 12 kHz it is impossible to derive a specification for how the overall series this range, the series impedance is dominated by the values of the series capacitors, but there is no consistency in the allocation of capacitance values in the designs shown

Decoupling devices are required, to protect electrical power supplies from the test stimuli, and also protect the auxiliary
equipment (AE) (sometimes called
equipment' in other EMC test standards).
They are specified by clause 6.3.2.2 of EN $61000-4-16$ as having the following characteristics..
So determining how to test an EUT's functional specifications well in advance helps avoid costly problems and delays, by organising any special testing arrangements, hiring special equipment, making special cables and leads, providing special power supplies (e.g.
hydraulic, pneumatic, high-power 3-phase, etc.), and so on.

Test conditions

Clause 8.1.1 of EN $61000-4-16$ states that
tests must be carried out in standard
climatic conditions ($15-25^{\circ} \mathrm{C}, 25-75 \%$ RH;
$86-106 \mathrm{kPa}$) unness specified in the
product's specification.
The EM environment in which the test is being conducted should not be so severe as to interfere with the EUT and influence the test results. EMC test laboratories

 a testing location is discussed in a later 흔

The test plan

 plan, before starting to test an EUT. The
Test Plan should specify at least the Test Plan should specify at least the
following...

- The type of the test
- The test level
The test duration (and for short-term
tests, the number of applications) to
allow complete verification of the EUTs
functional performance
- A list of the EUT ports that will be tested
Monitoring the EUT for performance
degradation during and after the
The functional performance degradation

 evaluated according to Clause 9 of EN Well before the tests are begun, the

 both during and after the CM disturbance

A professional EMC test laboratory should
be able to provide basic electrical test

 are provided by the manufacturer (e.g.
signal or distortion analysers, display screens, computers, etc.) long periods of

 premium test laboratory rates.
 required tests. Where customer-supplied functional test equipment is upset by EMC immunity tests, and no quick fixes seem to work, it is possible to run out of time trying
to fix the susceptibility of the test
 (maybe months) until another time-slot can
be booked to test the EUT. decoupling networks, all of them with their inputs grounded - except for the one being ested, which is connected to the output of 1
\vdots
0
0
0
0
0
0
0
0 its shield is connected directly to the test generator, and earthed/grounded when not being tested. Decoupling devices are not required where an AE , simulator, or power source is itself isolated (i.e. not connected to
 Where there are a large number of similar ports, it is only necessary to test one of
 been chosen.

The EUT should be operated in accordance with the appropriate product or generic standard. Where no product or generic standard applies, the EUT should be whilst being operated in each of its modes,
connected to all of its loads and AE as connected to all of its loads and AE as appropriate to allow it to operate as intended. The EUT should be loaded

 - if the method used will not affect the outcome of the test.

REO can create custom loads to meet any requirements

The test set-up

The test set-up is specified in Clause 7 of EN 61000-4-16, and is very simple.
 punol e
 cost for a manufacturer to perform inhouse, since it does not need shielded
 The EUT should be earthed/grounded according to its manufacturers installation instructions. The test generator, coupling and decoupling devices should be connected to the same earthing terminal бu!punoдб/би!чдеә д!әчł pue ' $\perp \cap \exists$ әчł se leads should be shorter than 1 m .

A ground plane that is connected to the
 instead of a common earthing terminal. It earthing/grounding leads from the EUT,
 devices connect to the ground plane, but
the earthing/grounding leads for the test generator, coupling and decoupling devices should still be shorter than 1 m . The EUT should be arranged and connected according to its installation instructions. AE that is required for the EUT to operate normally should be
provided, or replaced by simulators. Where the manufacturer specifies that certain otherwise unshielded cables suitable for he signals should be used. Where the manufacturer specifies a maximum cable length, this should be used, otherwise the cables should be 20 m long.

All of the EUT ports should be connected
to appropriate designs of coupling and
seen to occur with at least one operational
mode - which can then be taken to be
the most susceptible.
Finally, the test stimuli are applied to each port in turn via its coupling network (with the inputs of the other ports' coupling networks being grounded), with the following tests applied in any convenient order as long as it is documented...

- The continuous tests at the frequency of the electrical supply (for example DC,
$16.67,50$ or 60 Hz)
- The short-term tests at the frequency of the electrical supply
- The continuous tests over the frequency
range 15 Hz to 150 kHz

The EUT's functional performance should be continuously monitored throughout the tests, and in each case the test duration (and for short-term tests, the number of
applications) should be sufficient to allow applications) should be sufficient to allow
its complete verification.
 generator's output voltages and voltage waveforms are monitored with an
oscilloscope during all of the tests to
ensure that they remain within
specification at all times. Note that the
trained human eye can usually only detect
 screen at levels of 2% or more. Unless the EUT's modes of operation are specified by the product or generic standard that calls up EN 61000-4-16, the tests are repeated for each mode unless there is a good technical reason why this speed motor drive may need to be speed motor drive may need to be retested if it can be used in lifferent speed
control modes (e.g. open-loop, tacho feedback or 'vector'). If any tests are not
-00019 Nヨ ‘suo!!! puoo ןeuo! \supset ounf do ןeub!s
 as references in the evaluation of the test voltage influence" - but in the author's view this might be difficult to achieve in some situations. For instance, if the
 might be more likely to cause a test failure (e.g. a 'crashed' microprocessor) than if the signal had the intended quality. Clause 8 of EN 61000-4-16 includes a note that "A preliminary investigation
 voltage to the earth port of the EUT in the complete set-up described for type tests." - but it doesn't say why this should be
 the ports at once, it is a useful technique
 are more susceptible, and therefore

 әq uev! uene

 of the EUT that has more than three
unshielded ports, the actual voltage applied to the EUT will generally be much

 each port individually. This booklet recommends that either the test generator used has a lower output impedance (e.g.
output current and power rating), or the
test level is increased until interference is

 tests, to help identify testing and monitoring requirements whilst there still enough time to make changes, hire equipment, construct test leads and
 to avoid wasting time sorting out unforeseen problems whilst paying premium test laboratory rates.

The test procedure

Safety Note: The voltages and 'earth leakage' currents associated with this test can create unsafe situations - adequate safety precautions are essential to avoid risks to operators. If you are not a safety expert or do not know exactly what you must follow the advice of someone
who has the necessary knowledge and experience.

Because the CDNs might upset the

 signals, the test is initially set-up as described above but without the coupling the equipment required to monitor the operation of the EUT in place. The EUT is
 connected to AE that simulates its real-life applications. No test stimuli are applied, and the equipment's performance is verified.

Next, the coupling and decoupling networks are connected, and the EUT operated again. This time the signal, control and data signals, and the functional performances are measured to see whether the coupling and decoupling networks have degraded them.

Where the addition of the coupling and decoupling networks has created new
 (representative of normal use, remembering that each of the EUT's operational or generic standard that calls up the EN 61000-4-16 test)

- The auxiliary equipment (AE)

In addition, this booklet recommends that
the following be included in the test plan... - The type designation of the EUT

Details of the cables, coupling and decoupling networks that will be used

The performance criteria used and
defined in the technical specifications

Descriptions of the design and

manufacture of any simulators, special cables/connectors, etc. required to

The descriptions of the equipment used for monitoring the EUT's performance description of how it is to be set-up and used

- An explanation of how the uncertainties in the functional tests have been dealt the functional performance specification (see later) really will be achieved (or not) during the tests

How it will be ensured that all power supply, signal and other functional within their rated ranges
(However, where this test was performed despite not being called-up by a generic, product or product-family standard - this booklet recommends that the performance criteria defined by the manufacturer, purchaser, or any other person who requested the test be
detailed instead.)

- Any effects on EUT performance observed during or after the application of the test disturbances, and the duration
for which these effects persisted for which these effects persisted - The rationale for the pass/fail decision (based on the performance criterion
specified in the generic, product or specified in the generic, product or product-family standard, or agreed
between the manufacturer and the purchaser, or other person who
- Any specific condition of use, for example cable length or type, shielding
or grounding, or EUT operating
conditions, which were required to
achieve compliance with the standard
 the test generator verification (see above) in the report, plus a judgement on whether the test generator was functioning correcly before and during the tests, either in the EMC Test Report or in some other QA controlled document. This is so
that years later, when all the personnel have changed, it can still be discovered whether a particular test had been done with a fully working generator that had sufficient voltage and current capability for the EUT.
option. But if the consequences were
acceptable, then b) or c) might be considered a PASS.

Test report

Clause 9 of EN 61000-4-16 states that the test report should include the test conditions and test results.

However, it is good practice in general in EMC immunity testing to include is what is following in a test report, so this is what is
recommended in this booklet:

- The items specified in the test plan (see above)
- Identification of the EUT and any AE, e.g. brand name, product type, serial number. The EUT should be identified in sufficient detail that its hardware and
software build state is exactly defined
 brand name, product type, serial
 which the test was performed, e.g. inside a shielded enclosure
- Any specific conditions that were necessary to enable the test to be performed
- Annotated photographs or drawings of
the actual test set-up (not a standard figure)
- The performance level(s) defined by the manufacturer, the requestor of the test, or the purchaser
- The performance criteria specified in
the generic, product or product-family

Where criteria b) applies, the time interval required for the EUT to recover its full performance is to be recorded in the test report.

Clause 9 also says that the EUT must not become dangerous or unsafe as a result f applying these tests, so this booklet s.nээo uo!̣еn!!s yons Кue !! łeपł səunsse
 also recommends that if the EUT emits any smoke or vapour, or otherwise displays any behaviour that is clearly unacceptable - even if the issue concerned is not covered in the agreed as FAll Dermining a PASS or a FAIL

Determining a PASS or a FAIL

 61000-4-16 cannot specify how to determine whether an EUT has passed or failed its tests - but selling an equipment with a data sheet that says it achieves classification d) (see above) is potentially and a joke to any purchaser who is familiar plnous (p uolpeoy!sseio piepuets әuł 4!! never be associated with a PASS result. Equipment expected to operate automatically and unattended for several
 achieve a) or b) for a PASS. But if the equipment was always used by an operator, it might be possible to claim a PASS result when its performance on the immunity tests was c). However, if theyld
 normal operation, a) or b) would be required.

If the consequences of momentary errors or non-functionality were considered to be very undesirable, a) might be the only
 reasons should be recorded in the test report (see later).

Evaluation of the test results

Clause 9 of EN 61000-4-16 requires the EUTs functional performance during and after each test to be assessed against manufacturer (or the person who requested the test). It recommends results be classified according to the following scheme...
a) Normal performance within the limits specified by the manufacturer, requestor or purchaser;
b) Temporary loss of function or degradation of performance which and from which the EUT recovers its normal performance, without operator intervention;
c) Temporary loss of function or
degradation of performance, the
intervention or systems reset;
d) Loss of function or degradation of performance that is not recoverable,
owing to damage to components or
software, or loss of data.
This classification is offered by EN 61000-$4-16$ as a guide to immunity standards committees if they call up this basic test method in their product or generic standards. It is very similar to the Performance Criteria A, B, C sometimes D) already commonly used in appeared in the generic immunity standards (EN 50081 and 2, now
superseded by the EN 61000-6 series).

Important Safety Note: Don't forget that interference, especially with aircraft or other vehicular systems; emergency services; some machinery or process control systems; life-support equipment and implanted electronic devices such as pacemakers; can have lethal consequences and appropriate precautions must be taken to make sure
that nobody's safety is compromised by that nobody's safety is compromised by
EN 61000-4-16 testing. It is also strongly recommended to take appropriate
precautions where there is a possibility of significant financial loss being caused by interference during testing.

Test generators commercially available from well-known EMC test equipment manufacturers would not normally be expected to cause interference problems, but nevertheless it is best to check that they comply with EN 61326-1 (or similar,

Of course, the EUT must operate properly in the first place, and when testing on a site that suffers from high levels of EM disturbances it may be necessary to use filtering and shielding techniques to be able to distinguish the effects of the

 (conducted or radiated) from the test generator itself might interfere with the EUT, AE, other test gear or any other equipment, it may be necessary to use filtering and shielding techniques to prevent this from happening.

If either of the above situations arises, there are a number of issues that will need to be taken into account to suppress the interfering frequencies effectively. Suitable filtering and shielding techniques are described in [18].
On-site testing to EN 61000-4-16 is easy to do. The only requirements are that the climatic conditions are within the range specified, and also suitable for the AE, test generator and performance testing not so severe that it interferes with the it is the environment or the test that is causing the functional performance to go out of
How to ensure that on-site tests do not suffer from, or cause, interference, is the subject of the next section.
Alternative test methods
Testing using alternative test generators and/or different types of test waveforms ence mat 'full be able to give 100 Conide00-4that 'full-compliance' tests to EN 61000-4compliant' tests may actually be better than full testing to EN 61000-4-16 for improving the reliability or safety of a equipment if they TARL (test as real-life, see later). EMC Directive enforcement agencies generally assume that equipment in serial manufacture are tested for continuing EMC compliance on a sampled basis, to show that no accidental changes have occurred in components, design or assembly. The costs of such a QA programme can often be considerably reduced by the use of quick, low-cost, non-compliant tests.
Because these tests do not involve RF, it is easy to develop low-cost alternative test generators that give results useful for development and QA even though they might not fully comply with EN 61000-4-16. Important Safety Note: Always take all safety precautions when working with hazardous voltages, such as voltages above 25 V RMS AC or 35 V peak or DC, or with hazardous currents, energies or stored charges. If you are not sure about all of guidance of a qualified and competent electrical health and safety at work person. When constructing equipment that employs hazardous voltages, always fully apply the atest versions of all relevant parts of the EN/IEC 61010 series, at least.
There are many possibilities for
constructing test generators and creating alternative test methods, and this booklet electrical and electronic engineers, always assuming that health and safety is the

Important Safety Note: Always take all safety precautions when working with hazardous voltages, such as voltages above 25 V RMS AC or 35 V peak or DC, or with hazardous currents, energies or stored charges. If you are not sure about all of these precautions - obtain and follow the guidance of a qualified and competent electrical health and safety at work person. When constructing equipment that employs hazardous versions of all relevant parts of the EN/IEC 61010 series, at least.
REO isolating transformer with low

An alternative test method using a floating EUT
(this is not a method described in EN 61000-4-16)
Another method is to supply the AE via an isolating transformer and connect a 100Ω resistor from its floating earth/ground to the reference ground. In such cases there should be no decoupling networks functional degradation occurs during the tests, investigations should be undertaken to determine whether it is the EUT or the $A E$ that is the cause. A simpler version of the above test uses the same set-up but without any CDNs, isolating transformers or 100Ω resistors at all. The EUT is simply set-up as it will be in real-life, but its earth/ground connection instead of to the earth/ground system. For battery-powered or 'double insulated' EUTs, each item of equipment that could

Even having EN 61000-4-16 fully applied
by the same accredited EMC test
laboratory cannot guarantee that a given EUT will be exposed to exactly the same stimuli each time it is tested. But if EMC
enforcement agents test an item of equipment, they are unlikely to use the equipment, they are unlikely to use the generator that was used by its manufacturer. So, an 'engineering margin' is recommended, because..
There can be differences in the test equipment, methods, or in the equipment, methods, or in the and after the EMC test, even when applied by the same staff at the same
test laboratory - possibly leading to test laboratory - possibly leading to
different results

- Coupling and decoupling networks are
not completely specified by EN 61000-4-
16, so may vary between test
laboratories
- Serially-manufactured items of performance due to component and assembly tolerances

So, when testing an item of equipment to
EN 61000-4-16 in a fully compliant ןеио!!!ppe ұечł рәриәшшоэәл s! !! ‘ләииеш
 chosen 'engineering margin' are also

 performance specifications. This will take care of the above bullet points.

At the time of writing it is understood that no product or generic standards listed under the EMC Directive requires EN 61000-4-16 tests, so how (or if) a manufacturer tests for CM disturbances $0 \mathrm{~Hz}-150 \mathrm{kHz}$ is entirely optional. But if EN $61000-4-16$ is referenced in a product or generic standard, or if it is called up in a
 method is used for design, development, ant repeatability of the test is very important (even though the correlation with EN 61000-4-16 may not be). All such tests will need to follow a procedure that has been
carefully worked out to help ensure that adequate repeatability is achieved.

циеd se pəsn әле sрочдәш әл!ңеиләңе иәчм of a QA programme, or to check variants, upgrades, or small modifications, a 'golden product' is recommended to act as a sort of 'calibration' for the test equipment and test low-cost EMC test gear and faster test confidence. Refer to section 1.9 of [19] for a detailed description of how to use the golden product correlation method.
If alternative methods are used to gain sufficient confidence for declaring

 some similar basis for correlating proper
EN 61000-4-16 testing with the alternative method actually used, the alternative әэиәр!лиоэ Кие әр!^олd Кןио ұчб!ш рочдәш at all if gross levels of overtesting are applied, and this can result in very expensive equipment.

 correlation will be achieved. Testing with a non-compliant test generator or coupling with the results from a 'proper' EN 61000-416 test for a particular build state of a specific equipment. Note that the software version is an important part of the build state - even a simple 'bug-fix' could have a significant effect on EM immunity.

But when following the Technical

 Construction File (TCF) route under 89/336/EEC (or when not fully applying harmonised standards under persuade the mandatory Competent Body (or optional Notified Body) that the alternative tests and test methods applied represent the environment that theequipment is going into, so there is no need to apply EN 61000-4-16 as well. This argument would probably be easier to win or a custom-designed (bespoke) industrial equipment intended for use at a specified site, than it would be for portable equipment or equipment that could be
supplied for use in a variety of locations or
sites. sites.

[^1]claims at all. So it is much more costeffective for them to improve the EM design of their appliances, to reduce warranty costs, even though this adds to their manufacturing costs.
Safety Note: When measuring voltages or currents, only use probes and equipment that are proven to comply with the appropriate parts of EN 61010 for the appropriate 'Measurement Category (previously known as 'Overvoltage Category' or 'Installation Category'). Measurement Category II is the minimum requirement, and Category III or even IV If you don't understand exactly what this means, have someone who is qualified and competent in this area sort it out for you. In some installations, special working procedures may be required. and electronic engineers are killed every year by electricity - don't let it be you or your colleagues, or anyone else!

environment(s) over its whole lifetime [4].

 This is too large a subject to discuss here - refer to [20] [21] [22] [23] and [24]. If the modified or additional tests can be based on calculations based on known characteristics of the intended application or on measurements of the intended period to capture the range of CM disturbances that can occur over the range $0 \mathrm{~Hz}-150 \mathrm{kHz}$, this will help avoid both under-engineering and overengineering.A problem with any automatic power
quality monitoring equipment is that if quality monitoring equipment is that if it is
not set up correctly, it will soon fill its not set up correctly, it will soon fill its recording too-detailed data. If you are not skilled in these matters, and if you don't want to spend time and money going through a learning curve - instead of hiring power quality monitoring equipment from one of the many companies that provide it, hire a power quality consultant instead and have them do the work using their own equipment, analyse the results and provide you with a report. But if the knowledge required for reasonably accurate TARL cannot be obtained, the manufacturer should decide how far to go with modified or additional testing with $0 \mathrm{~Hz}-150 \mathrm{kHz} \mathrm{CM}$ disturbances, based upon their sensitivity to warranty costs and customer perceptions of their product. The author
knows a large and very successful knows a large and very successful
manufacturer of residential applianc manufacturer of residential appliances what is required for compliance with the immunity standards listed under the EMC Directive. The reason they give for this is that their industry is highly competitive, so their profit margins are very small, so they can hardly afford to have any warranty
suo!!sənb xəןdmoง ‘uo! arise if alternative test methods are used instead of EN 61000-4-16 for
demonstrating compliance. A larger
engineering margin is recommended, at
least, but how much larger can be hard to determine other than by direct comparison of the effects of both test methods on the identical equipment.

The need for engineering margins
(not to scale) (not to scale)

As far as doing the minimum required to
achieve a presumption of conformity to the EMC Directive is concerned - saving costs and/or time by using alternative test generators or test methods can lead either to over-engineering or to non-compliance. The additional cost to make the equipment pass the alternative test method with the necessary engineering margins shou esting properly.
os иәлә ұnq) sə! is not compatible with some of the disturbance levels listed in [17] or [26]).
 countries (or parts of countries) that have a poorer quality of design or construction of electrical power distribution than is
normal in Europe, Australia or the USA. These could all suffer from CM
disturbances below 150 kHz that may be
 may also suffer from short-term CM disturbances at the electrical supply requency exceeding the 1.5 kV in [26] or
the 3 kV in Table 5 of [17]. Even in developed countries, there are often areas (usually remote rural ones) where CM disturbances could be worse
 in Australia there are some remote communities that are powered by a single

 well as the earth. Such communities could experience much higher levels of
continuous CM disturbances at the power frequency, and other frequencies below әses әчł әq КІІешлои рІпом иечł 'zHYOS elsewhere in Australia.

Potential differences in the

 the chassis or frame of an item of the equipment differs from the voltage chassis or frame of other items of equipment it is connected to. This is
 potential difference, or 'earth-lift', and leakage currents flowing in the earth/ground structure of the location building, vehicle or whatever cause continuous earth-lift potentials.

 long and/or pass outside of buildings or ther structures, Test Level 4 in EN 10dequate. The telecom companies appear to have an agreement with the power distribution and railway operators that it is they who should be responsible when CM voltages rise above 60 Vrms - on enjoying such co-operation?

So where very long signal, data or control to parallel conductors carrying high
currents (e.g. overhead power lines,
electrified railways, etc.), the equipment connected to these wires should be tested with at least 60 V rms continuous, 600 V short-term at the frequency of the AC power, to improve reliability, unless site surveys, calculations or other information shows that this is not necessary.

Significant levels of DM induction,

 or port-to-port conduction can Nヨ łецł рәио!̣иәш иәәq Креәле sеч 61000-4-16 does not test for induced DM disturbances. ITU-T Recommendation K44 [9] includes tests for such phenomena, which it calls 'transverse' instead of DM (ITU-T standards call CM phenomena tests longitudinal).Чग! the test voltage is applied between two ports, rather than between a port and the earth/ground. This test was developed in esponse to observed interfering

 better simulate real-life problems that had caused high failure rates in a new type of

This section discusses a number of situations that show why - to have sufficient confidence in reliable, accurate or safe operation in real life - it may be necessary to modify or add to the requirements in EN
$61000-4-16$ tests to achieve TARL ('Test As Real Life', see earlier).

There are some other immunity tests that 61000-4-16 where TARL is required. For example [7-12] include CM and DM tests below 150 kHz that are particularly appropriate for very long cables that connect within and between buildings (such as
aerospace EM environments [13], [14] and 15] include CM and DM tests below 150 kHz immunity test standards for frequencies below 150 kHz , intended to represent the EM environment within an automobile.

 situations - adequate safety precautions are essential to avoid risks to operators. If you are not a safety expert or do not know advice of someone who has the necessary knowledge and experience.

High levels of CM induction from
[11] describes how to determine who should be responsible for solving mains-frequency interference problems with telecom installations. Telecom equipment is tested with 60 V rms for up to 15 minutes, ac to EN 61000-4-16, and if the actual
interfering voltage on a site is higher than 60 Vrms it is the mains power or ralway 60 V or less.
 the effects of lightning), its resistance will earthed system, so the earth-lift resulting from an earth fault will be correspondingly
lower. lower.
Electrical installers generally only start to become concerned when the earth/ground
 electric shock. The author knows of people who have received significant shocks in commercial buildings and theatres when
 due to the mains frequency voltage existing between the unplugged connect 30 V continuous voltage (Test Level 4) in Table 1 of EN 61000-4-16 can be reached or exceeded in real life, and not only on industrial sites.
Installation advice that used to be given out with a serial data-communication system for use with theatre lighting desks
 " the cable shield at both ends, because ...the data cable might explode due to the earth/ground potential differences in older theatres, and the amount of current
they could source. But the test generators specified by EN
$61000-4-16$ have a 50Ω output impedance and are connected via 100Ω networks,
 an open-circuit load. When their load has a low impedance, as might occur when
driving the shield of a cable or the earth/ground terminal of a 'floating' EUT,
 could be very low indeed. These test generators certainly are not capable of where the earth/ground structure's impedance is low.

1] IEC 61000-4-16:1998,

 "Electromagnetic Compatibility (EMC) Electromagnetic 4-16: Testing and meatiility (EMC) techniques - Test for immunity to conducted, common mode disturbance the frequency range 0 Hz to 150 kHz ". [2] EN 61000-4-16:1998, "Electromagnetic Compatibility (EMC) - Part 4-16: Testingand measurement techniques - Test for immunity to conducted, common mode disturbances in the frequency range 0 Hz to 150 kHz
3] European Union Directive 89/336/EEC (as amended) on Electromagnetic Compatibility. The Directive's official EU homepage includes a downloadable version of the current EMC Directive and
 standards listed under the Directive; a guidance document on how to apply the Directive; lists of appointed EMC http://europa.eu. int/comm/enterprise/ electr_equipment/emc/index.htm.
[4] "Assessing an Electromagnetic Environment', Keith Armstrong, Downloads' page at http://www.cherryclough.com. [5] European Union Directive 2004/108/EC on Electromagnetic Compatibility (2 $2^{\text {nd }}$ Edition), from: http://europa.eu. _39020041231en00240037.pdf
[6] A number of REO booklets on other types of EM disturbances and their corresponding EN test standards can be downloaded from hitp:/// $/$ ww.reo.co. uk
/guides $/$, or ordered as paper booklets.
frequent checking helps achieve better correlation with the measured disturbances.
A problem with any automatic power quality monitoring equipment is that if it is memory (or use up all of its paper) recording too-detailed data. If you are not skilled in these matters, and if you don't through a learning curve - instead of hiring power quality monitoring equipment from one of the many companies that
 work using their own equipment, analyse the results and produce a report.
Where the failure rate is low (e.g. once per month) a site survey to try to locate
 engineer might already have an idea of
 likely cause of the failures, and after
 have a good idea of what is the most engineer might then be able to suggest engineer might then be able to suggest
ways of creating the EM disturbance in question (rather than wait for it to occur
 the failure. This can save a great deal of

[^2][25] ITU-T Recommendation K20,
Amendment 1 (11/2004) "Resistibility of
telecommunication equipment installed in
a telecommunications centre to
overvoltages and overcurrents.
Amendment 1: New Appendix - Floating
transverse power induction and earth
potential rise test for ports connected to
external symmetric pair cables", see [7] for
how to download a copy.
[26] EN 50160:1999 "Voltage
characteristics of electricity supplied by
public distribution systems"
[27] "Combined Effects of Several,
Simultaneous, EMI Couplings", Michel
Mardiguian, 2000 IEEE International
Symposium on EMC, Washington DC,
August 21-25 2000, ISBN 0-7803-5680-2,
pp. 181-184.
IEC standards may be purchased with a
credit card from the on-line bookstore at
http://www.iec.ch, and many of them can
be delivered by email within the hour.
EN standards may only be purchased from
EU member state national standards
bodies (e.g. BSI in the UK and AFNOR in
France).
Both EN and IEC standards may
purchased from the British Standards
Institution (BSI) at: orders@bsi-
global.com. To enquire about a standard
or other standard-based services call BSI
Customer Services on +44 (0)20 8996
9001 or e-mail them at cservices@bsi-
global.com
REO is an original manufacturer of high quality power equipment, including electronic controllers, components and electrical regulators, all backed by the application expertise demanded by specialised, industrial sectors, such
Controllers designed specifically for use in the parts and materials handling industry, together with a wide range of electromagnets for driving vibratory feeders.
Power controllers for adjusting and regulating voltage, current, frequency or power, as well as its long established variable transformers (variacs) up to 1MVA and sliding resistors of all types. These are complemented by a range of modern,
electronic, variable power supplies.

Typical REO differential-mode chokes
 Phase-angle and frequency controllers

Medical Transformers

REO - Market Sectors

Chokes and high frequency

Power supplies and load banks

sıołs!səı 6u!yeıq pue sıəŋ!!」

Solar transformers

Soft-starts

Rheostats and variacs

Motor Control Systems

[^0]: Faults in the electrical power supply can cause a live power conductor to make

[^1]: When self-declaring compliance to the Directive using the Standards Route lonformity (Article 10.1 of [3]) - even to simulate the operating environment and help achieve reliability - passing full compliance tests to EN 61000-4-16 can help avoid the possibility of legal

[^2]: time.
 \qquad

